Model-informed precision dosing using virtual twins (MIPD-VTs) is an emerging strategy to predict target drug concentrations in clinical practice. Using a high virtualization MIPD-VT approach (Simcyp version 21), we predicted the steady-state clozapine concentration and clozapine dosage range to achieve a target concentration of 350 to 600 ng/mL in hospitalized patients with treatment-resistant schizophrenia (N = 11). We confirmed that high virtualization MIPD-VT can reasonably predict clozapine concentrations in individual patients with a coefficient of determination (R ) ranging between 0.29 and 0.60. Importantly, our approach predicted the final dosage range to achieve the desired target clozapine concentrations in 73% of patients. In two thirds of patients treated with fluvoxamine augmentation, steady-state clozapine concentrations were overpredicted two to four-fold. This work supports the application of a high virtualization MIPD-VT approach to inform the titration of clozapine doses in clinical practice. However, refinement is required to improve the prediction of pharmacokinetic drug-drug interactions, particularly with fluvoxamine augmentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10941576PMC
http://dx.doi.org/10.1002/psp4.13093DOI Listing

Publication Analysis

Top Keywords

high virtualization
12
virtualization mipd-vt
12
clozapine concentrations
12
virtual twins
8
model-informed precision
8
precision dosing
8
patients treatment-resistant
8
treatment-resistant schizophrenia
8
clinical practice
8
mipd-vt approach
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!