We consider a system of globally coupled phase-only oscillators with distributed intrinsic frequencies and evolving in the presence of distributed Gaussian white noise, namely, a Gaussian white noise whose strength for every oscillator is a specified function of its intrinsic frequency. In the absence of noise, the model reduces to the celebrated Kuramoto model of spontaneous synchronization. For two specific forms of the mentioned functional dependence and for a symmetric and unimodal distribution of the intrinsic frequencies, we unveil the rich long-time behavior that the system exhibits, which stands in stark contrast to the case in which the noise strength is the same for all the oscillators, namely, in the studied dynamics, the system may exist in either a synchronized, or an incoherent, or a time-periodic state; interestingly, all these states also appear as long-time solutions of the Kuramoto dynamics for the case of bimodal frequency distributions, but in the absence of any noise in the dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.064124 | DOI Listing |
Entropy (Basel)
December 2024
Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK.
Entropy management, central to the Free Energy Principle, requires a process that temporarily shifts brain activity toward states of lower or higher entropy. Metastable synchronization is a process by which a system achieves entropy fluctuations by intermittently transitioning between states of collective order and disorder. Previous work has shown that collective oscillations, similar to those recorded from the brain, emerge spontaneously from weakly stable synchronization in critically coupled oscillator systems.
View Article and Find Full Text PDFMicrobes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms.
View Article and Find Full Text PDFSci Rep
January 2025
Nanyang Technological University, Singapore, 639798, Singapore.
Although electric vehicles supplied through distributed generators (DGs) have been universally researched to reduce CO emissions, the accurate current sharing regarding islanded multi-bus DC charging stations considering three charging modes of electric vehicles, i.e., constant current mode, constant power mode and constant voltage mode, is rarely realized.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
Biol Sport
January 2025
School of Science and Technology, University of New England, Armidale, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!