Bistable spiral wave dynamics in electrically excitable media.

Phys Rev E

Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.

Published: December 2023

AI Article Synopsis

  • The research demonstrates that a feedback loop involving sodium current inactivation influences the speed of wave-front ramp-up, leading to a saddle-node bifurcation that produces bistable planar and spiral waves in excitable media.
  • Different stimulation methods can initiate either slow or fast waves, indicating varied wave dynamics.
  • These variations in spiral wave behavior may contribute to the complex dynamics observed in cardiac arrhythmias and certain neurological disorders.

Article Abstract

We show that a positive feedback loop between sodium current inactivation and wave-front ramp-up speed causes a saddle-node bifurcation to result in bistable planar and spiral waves in electrically excitable media, in which both slow and fast waves are triggered by different stimulation protocols. Moreover, the two types of spiral wave conduction may interact to give rise to more complex spiral wave dynamics. The transitions between different spiral wave behaviors via saddle-node bifurcation can be a candidate mechanism for transitions widely seen in cardiac arrhythmias and neural diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338078PMC
http://dx.doi.org/10.1103/PhysRevE.108.064405DOI Listing

Publication Analysis

Top Keywords

spiral wave
16
wave dynamics
8
electrically excitable
8
excitable media
8
saddle-node bifurcation
8
bistable spiral
4
wave
4
dynamics electrically
4
media positive
4
positive feedback
4

Similar Publications

Achieving highly tailored control over both the spatial and temporal evolution of light's orbital angular momentum (OAM) on ultrafast timescales remains a critical challenge in photonics. Here, we introduce a method to modulate the OAM of light on a femtosecond scale by engineering a space-time coupling in ultrashort pulses. By linking azimuthal position with time, we implement an azimuthally varying Fourier transformation to dynamically alter light's spatial distribution in a fixed transverse plane.

View Article and Find Full Text PDF

Mesoscale heterogeneity is a critical determinant for spiral pattern formation in developing social amoeba.

Sci Rep

January 2025

Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, 565-0871, Osaka, Japan.

Heterogeneity is a critical determinant for multicellular pattern formation. Although the importance of microscale and macroscale heterogeneity at the single-cell and whole-system levels, respectively, has been well accepted, the presence and functions of mesoscale heterogeneity, such as cell clusters with distinct properties, have been poorly recognized. We investigated the biological importance of mesoscale heterogeneity in signal-relaying abilities (excitability) in the self-organization of spiral waves of intercellular communications by studying the self-organized pattern formation in a population of Dictyostelium discoideum cells, a classical signal-relaying system model.

View Article and Find Full Text PDF

The oscillatory Belousov-Zhabotinsky (BZ) reaction is often used for the study of rotating spiral waves that are responsible for life-threatening cardiac arrhythmia. In this work, we explore the influence of a concentration gradient on the dynamics of spiral waves in the BZ-reaction system. Using ion-exchange resin beads, we introduce a gradient of hydrogen ions in a thin layer of BZ gel hosting a spiral wave.

View Article and Find Full Text PDF

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF

Traveling waves of excitation arise from the spatial coupling of local nonlinear events by transport processes. In corrosion systems, these electro-dissolution waves relay local perturbations across large portions of the metal surface, significantly amplifying overall damage. For the example of the magnesium alloy AZ31B exposed to sodium chloride solution, we report experimental results suggesting the existence of a vulnerable zone in the wake of corrosion waves where local perturbations can induce a unidirectional wave pulse or segment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!