By producing localized wave regions at the ends of an open-field-line magnetic confinement system, ponderomotive walls can be used to differentially confine different species in the plasma. Furthermore, if the plasma is rotating, this wall can be magnetostatic in the laboratory frame, resulting in simpler engineering and better power flow. However, recent work on such magnetostatic walls has shown qualitatively different potentials than those found in the earlier, nonrotating theory. Here, using a simple slab model of a ponderomotive wall, we resolve this discrepancy. We show that the form of the ponderomotive potential in the comoving plasma frame depends on the assumption made about the electrostatic potential in the laboratory frame. If the laboratory-frame potential is unperturbed by the magnetic oscillation, one finds a parallel-polarized wave in the comoving frame, while if each field line remains equipotential throughout the perturbation region, one finds a perpendicularly polarized wave. This in turn dramatically changes the averaged ponderomotive force experienced by a charged particle along the field line, not only its scaling, but also its direction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.065210 | DOI Listing |
Germs
September 2024
MD, FESPCH, Prof., General Practitioner, Röntgenstr. 2 82152 Martinsried, Germany.
High quality research is critical for evidence-based decision making in public health and fundamental to maintain progress and trust in immunization programs in Europe. In 2024 the European Centre for Disease Prevention and Control (ECDC) conducted an update of the 2020 systematic review to capture more recent evidence on of the efficacy, effectiveness of influenza vaccines in individuals aged 18 years and older in the prevention of laboratory-confirmed influenza. While this report was highly anticipated due to the strength of the protocol and processes put in place, during our assessment, we expressed two chief concerns.
View Article and Find Full Text PDFVirus Genes
January 2025
College of Agronomy, Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Agricultural University, Urumqi, 830052, China.
A novel plant virus was identified in fig trees exhibiting ring spot symptoms through high-throughput sequencing (HTS). The complete genome sequence was successfully determined using PCR and RT-PCR techniques. The virus features a circular DNA genome of 7233 nucleotides (nt) in length, encompassing four open reading frames (ORFs).
View Article and Find Full Text PDFSci Rep
January 2025
The Higher Educational Key Laboratory for Flexible Manufacturing Equipment Integration of Fujian Province (Xiamen Institute of Technology), Xiamen, 361021, China.
With ongoing social progress, three-dimensional (3D) video is becoming increasingly prevalent in everyday life. As a key component of 3D video technology, depth video plays a crucial role by providing information about the distance and spatial distribution of objects within a scene. This study focuses on deep video encoding and proposes an efficient encoding method that integrates the Convolutional Neural Network (CNN) with a hyperautomation mechanism.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer Science and Software Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
Drowsy driving is a leading cause of commercial vehicle traffic crashes. The trend is to train fatigue detection models using deep neural networks on driver video data, but challenges remain in coarse and incomplete high-level feature extraction and network architecture optimization. This paper pioneers the use of the CLIP (Contrastive Language-Image Pre-training) model for fatigue detection.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China.
In orchard environments, negative obstacles such as ditches and potholes pose significant safety risks to robots working within them. This paper proposes a negative obstacle detection method based on LiDAR tilt mounting. With the LiDAR tilted at 40°, the blind spot is reduced from 3 m to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!