When objects are forced to flow through constrictions their transport can be frustrated temporarily or permanently due to the formation of arches in the region of the bottleneck. While such systems have been intensively studied in the case of solid particles in a gas phase being forced by gravitational forces, the case of solid particles suspended in a liquid phase, forced by the liquid itself, has received much less attention. In this case, the influence of the liquid flow on the transport efficiency is not well understood yet, leading to several apparently trivial but yet unanswered questions, e.g., would an increase of the liquid flow improve the transport of particles or worsen it? Although some experimental data are already available, they lack enough detail to give a complete answer to such a question. Numerical models would be needed to scrutinize the system deeper. In this paper, we study this system making use of an advanced discrete particle solver (mercurydpm) and an approximated numerical model for the liquid drag and compare the results with experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.064905DOI Listing

Publication Analysis

Top Keywords

discrete particle
8
particle solver
8
case solid
8
solid particles
8
phase forced
8
liquid flow
8
experimental data
8
liquid
5
clogging noncohesive
4
noncohesive suspensions
4

Similar Publications

This paper investigates the effects of particle morphology (PM) and particle size distribution (PSD) on the micro-macro mechanical behaviours of granular soils through a novel X-ray micro-computed tomography (μCT)-based discrete element method (DEM) technique. This technique contains the grain-scale property extraction by the X-ray μCT, DEM parameter calibration by the one-to-one mapping technique, and the massive derivative DEM simulations. In total, 25 DEM samples were generated with a consideration of six PSDs and four PMs.

View Article and Find Full Text PDF

This study evaluates the performance of continuous flow and drop-based microfluidic devices for the synthesis of silver nanoparticles (AgNPs) under identical hydrodynamic and chemical conditions. Flows at low values of Dean number (De < 1) were investigated, where the contribution of the vortices forming inside the drop to the additional mixing inside the reactor should be most noticeable. In the drop-based microfluidic device, discrete aqueous drops serving as reactors were generated by flow focusing using silicone oil as the continuous phase.

View Article and Find Full Text PDF

Despite their widespread adoption, particle-scale simulation methods, such as the Discrete Element Method (DEM), for electrically charged particles in several natural processes and industrial transformations do not include realistic polarization effects. At close distances, these can dominate the particle motion and are impossible to predict by the commonly adopted Coulomb point-charge approximation. Sophisticated mathematical tools can account for uneven charge distributions, predicting an attractive force between a charged particle and a neutral particle or possible attraction between two like-charged particles.

View Article and Find Full Text PDF

Self-Assembly of Particles on a Curved Mesh.

Entropy (Basel)

January 2025

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

Discrete statistical systems offer a significant advantage over systems defined in the continuum, since they allow for an easier enumeration of microstates. We introduce a lattice-gas model on the vertices of a polyhedron called a pentakis icosidodecahedron and draw its exact phase diagram by the Wang-Landau method. Using different values for the couplings between first-, second-, and third-neighbor particles, we explore various interaction patterns for the model, ranging from softly repulsive to Lennard-Jones-like and SALR.

View Article and Find Full Text PDF

Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!