A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scaling of surface roughness in film deposition with height-dependent step edge barriers. | LitMetric

Scaling of surface roughness in film deposition with height-dependent step edge barriers.

Phys Rev E

Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói, Rio de Janeiro, Brazil.

Published: December 2023

We perform kinetic Monte Carlo simulations of film growth in simple cubic lattices with solid-on-solid conditions, Ehrlich-Schwoebel (ES) barriers at step edges, and a kinetic barrier related to the hidden off-plane diffusion at multilayer steps. Broad ranges of the diffusion-to-deposition ratio R, detachment probability per lateral neighbor, ε, and monolayer step crossing probability P=exp[-E_{ES}/(k_{B}T)] are studied. Without the ES barrier, four possible scaling regimes are shown as the coverage θ increases: nearly layer-by-layer growth with damped roughness oscillations; kinetic roughening in the Villain-Lai-Das Sarma (VLDS) universality class when the roughness is W∼1 (in lattice units); unstable roughening with mound nucleation and growth, where slopes of logW×logθ plots reach values larger than 0.5; and asymptotic statistical growth with W=θ^{1/2} solely due to the kinetic barrier at multilayer steps. If the ES barrier is present, the layer-by-layer growth crosses over directly to the unstable regime, with no transient VLDS scaling. However, in simulations up to θ=10^{4} (typical of films with a few micrometers), low temperatures (small R, ε, or P) may suppress the two or three initial regimes, while high temperatures and P∼1 produce smooth surfaces at all thicknesses. These crossovers help to explain proposals of nonuniversal exponents in previous works. We define a smooth film thickness θ_{c} where W=1 and show that VLDS scaling at that point indicates negligible ES barriers, while rapidly increasing roughness indicates a small ES barrier (E_{ES}∼k_{B}T). θ_{c} scales as ∼exp(const×P^{2/3}) if the other parameters are kept fixed, which represents a high sensitivity on the ES barrier. The analysis of recent experimental data in the light of our results distinguishes cases where E_{ES}/(k_{B}T) is negligible, ∼1, or ≪1.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.064802DOI Listing

Publication Analysis

Top Keywords

kinetic barrier
8
multilayer steps
8
layer-by-layer growth
8
vlds scaling
8
barrier
6
growth
5
scaling
4
scaling surface
4
roughness
4
surface roughness
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!