Kappa-distributed velocities in plasmas are common in a wide variety of settings, from low-density to high-density plasmas. To date, they have been found mainly in space plasmas, but are recently being considered also in the modeling of laboratory plasmas. Despite being routinely employed, the origin of the kappa distribution remains, to this day, unclear. For instance, deviations from the Maxwell-Boltzmann distribution are sometimes regarded as a signature of the nonadditivity of the thermodynamic entropy, although there are alternative frameworks such as superstatistics where such an assumption is not needed. In this work we recover the kappa distribution for particle velocities from the formalism of nonequilibrium steady-states, assuming only a single requirement on the dependence between the kinetic energy of a test particle and that of its immediate environment. Our results go beyond the standard derivation based on superstatistics, as we do not require any assumption about the existence of temperature or its statistical distribution, instead obtaining them from the requirement on kinetic energies. All of this suggests that this family of distributions may be more common than usually assumed, widening its domain of application in particular to the description of plasmas from fusion experiments. Furthermore, we show that a description of kappa-distributed plasma is simpler in terms of features of the superstatistical inverse temperature distribution rather than the traditional parameters κ and the thermal velocity v_{th}.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.065207DOI Listing

Publication Analysis

Top Keywords

kappa distribution
12
distribution particle
8
plasmas
6
distribution
5
particle correlations
4
correlations nonequilibrium
4
nonequilibrium steady-state
4
steady-state plasmas
4
plasmas kappa-distributed
4
kappa-distributed velocities
4

Similar Publications

Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.

View Article and Find Full Text PDF

Prevalence of Osteochondral Lesions on Magnetic Resonance Imaging Following Simple Elbow Dislocations.

J Clin Med

January 2025

Department for Trauma and Orthopaedic Surgery, BG Klinik Ludwigshafen, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen, Germany.

Literature regarding osteochondral lesions in patients following elbow dislocation is scarce. The aim of this study was to examine osteochondral lesions on MRI in patients following simple elbow dislocations and evaluate inter-rater reliability between radiologists and orthopedic surgeons at different levels of experience. In this retrospective, single-center study, 72 MRIs of patients following simple elbow dislocations were evaluated.

View Article and Find Full Text PDF

Various prognostic scoring systems in myelofibrosis (MF) have been developed to guide clinical decision-making in MF. However, discrepancies between different scoring systems for individual patients remain poorly understood, which can result in conflicting treatment recommendations. Moreover, data regarding there applicability in Asian populations remain scarce.

View Article and Find Full Text PDF

Although low-dose lactulose has shown a good theoretical foundation for the treatment of ulcerative colitis (UC) in previous studies, the exact effects and mechanism remain unclear. The rats were randomly distributed into 5 groups, i.e.

View Article and Find Full Text PDF

[Prediction of potential geographic distribution of in Yunnan Province using random forest and maximum entropy models].

Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi

December 2024

Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, Yunnan 671000, China.

Objective: To predict the potential geographic distribution of in Yunnan Province using random forest (RF) and maximum entropy (MaxEnt) models, so as to provide insights into surveillance and control in Yunnan Province.

Methods: The snail survey data in Yunnan Province from 2015 to 2016 were collected and converted into snail distribution site data. Data of 22 environmental variables in Yunnan Province were collected, including twelve climate variables (annual potential evapotranspiration, annual mean ground surface temperature, annual precipitation, annual mean air pressure, annual mean relative humidity, annual sunshine duration, annual mean air temperature, annual mean wind speed, ≥ 0 ℃ annual accumulated temperature, ≥ 10 ℃ annual accumulated temperature, aridity and index of moisture), eight geographical variables (normalized difference vegetation index, landform type, land use type, altitude, soil type, soil textureclay content, soil texture-sand content and soil texture-silt content) and two population and economic variables (gross domestic product and population).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!