Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Jamming is an emergent phenomenon wherein the local stability of individual particles percolates to form a globally rigid structure. However, the onset of rigidity does not imply that every particle becomes rigid, and indeed some remain locally unstable. These particles, if they become unmoored from their neighbors, are called rattlers, and their identification is critical to understanding the rigid backbone of a packing, as these particles cannot bear stress. The accurate identification of rattlers, however, can be a time-consuming process, and the currently accepted method lacks a simple geometric interpretation. In this manuscript, we propose two simpler classifications of rattlers in hard sphere systems based on the convex hull of contacting neighbors and the maximum inscribed sphere of the radical Voronoi cell, each of which provides geometric insight into the source of their instability. Furthermore, the convex hull formulation can be generalized to explore stability in hyperstatic soft sphere packings, spring networks, nonspherical packings, and mean-field non-central-force potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.064901 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!