A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reservoir computing with higher-order interactive coupled pendulums. | LitMetric

Reservoir computing with higher-order interactive coupled pendulums.

Phys Rev E

School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710072, China.

Published: December 2023

The reservoir computing approach utilizes a time series of measurements as input to a high-dimensional dynamical system known as a reservoir. However, the approach relies on sampling a random matrix to define its underlying reservoir layer, which leads to numerous hyperparameters that need to be optimized. Here, we propose a nonlocally coupled pendulum model with higher-order interactions as a novel reservoir, which requires no random underlying matrices and fewer hyperparameters. We use Bayesian optimization to explore the hyperparameter space within a minimal number of iterations and train the coupled pendulums model to reproduce the chaotic attractors, which simplifies complicated hyperparameter optimization. We illustrate the effectiveness of our technique with the Lorenz system and the Hindmarsh-Rose neuronal model, and we calculate the Pearson correlation coefficients between time series and the Hausdorff metrics in the phase space. We demonstrate the contribution of higher-order interactions by analyzing the interaction between different reservoir configurations and prediction performance, as well as computations of the largest Lyapunov exponents. The chimera state is found as the most effective dynamical regime for prediction. The findings, where we present a new reservoir structure, offer potential applications in the design of high-performance modeling of dynamics in physical systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.064304DOI Listing

Publication Analysis

Top Keywords

reservoir computing
8
coupled pendulums
8
time series
8
higher-order interactions
8
reservoir
7
computing higher-order
4
higher-order interactive
4
interactive coupled
4
pendulums reservoir
4
computing approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!