The current approach to diagnosing and classifying brain tumors relies on the histological evaluation of biopsy samples, which is invasive, time-consuming, and susceptible to manual errors. These limitations underscore the pressing need for a fully automated, deep-learning-based multi-classification system for brain malignancies. This article aims to leverage a deep convolutional neural network (CNN) to enhance early detection and presents three distinct CNN models designed for different types of classification tasks. The first CNN model achieves an impressive detection accuracy of 99.53% for brain tumors. The second CNN model, with an accuracy of 93.81%, proficiently categorizes brain tumors into five distinct types: normal, glioma, meningioma, pituitary, and metastatic. Furthermore, the third CNN model demonstrates an accuracy of 98.56% in accurately classifying brain tumors into their different grades. To ensure optimal performance, a grid search optimization approach is employed to automatically fine-tune all the relevant hyperparameters of the CNN models. The utilization of large, publicly accessible clinical datasets results in robust and reliable classification outcomes. This article conducts a comprehensive comparison of the proposed models against classical models, such as AlexNet, DenseNet121, ResNet-101, VGG-19, and GoogleNet, reaffirming the superiority of the deep CNN-based approach in advancing the field of brain tumor classification and early detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799524 | PMC |
http://dx.doi.org/10.1186/s12880-024-01195-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!