Taraxacum mongolicum is a perennial herbaceous plant in the family Asteraceae, with a high edible and medicinal value and is widely planted in China. In August 2022, leaf spots were found on T. mongolicum in Tianjiazhai Town, Xining City, Qinghai Province, China (36°27'17.65″N, 101°47'19.65E, elevation: 2,408 m). The plants exhibited round or irregular brown spots, and the centers of some of the spots were gray (Fig. S1A). An investigation was performed over a hectare area, and the incidence of leaf spot reached 15%-30%, seriously affecting the quality and yield of T. mongolicum. Eleven T. mongolicum leaf spot samples were collected. To isolate the pathogenic fungus, approximately 0.5 cm×0.5 cm pieces of tissues were obtained using sterile scissors from the junction of infected and healthy tissues. The symptomatic leaves were surface-disinfected with 3% NaClO for 1.5 min and washed three times with sterile water. The disinfected pieces were dried and placed on water agar plates in an incubator for 2 days at 25°C. Subsequently, the leaf surface exhibited conidiophores and conidia. Eleven isolates were obtained by single spore isolation. The sparse aerial mycelia were dark grey to black brown in color on potato dextrose agar (PDA) (Fig. S2A), and produced dark, multi-septate conidia with 7-11 transverse septa and 1-2 longitudinal septa (Fig. S2C). Conidia with one or two beaks were long-ovoid, with an average length and width of 103.4 × 21.2 μm, and 80.7 × 3.9 μm of the beaks. One hundred and ten conidia were measured. The identification of 11 isolates was confirmed by multilocus sequence analyses of the internal transcribed spacer of ribosomal DNA (rDNA ITS) (White et al. 1990), and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Xu et al. 2022), actin (ACT) (Yang et al. 2020), histone 3 (HIS3) (Zheng et al. 2015), translation elongation factor 1-α (TEF1-α) (Carbone. 1999), and the second largest subunit of RNA polymerase II (RPB2) (Liu et al. 1999) genes. The sequences of all the isolates were deposited in Genbank (NCBI Accession Nos. ITS: OR105029-OR105039, ACT: OR135220-OR135230, GAPDH: OR135231-OR135241, HIS3: OR122992-OR123002, TEF1-α: PP055972-PP055982, and RPB2: PP055983-PP055993), and the sequence similarity of ITS, ACT, GAPDH, HIS3,TEF1-α and RPB2 were 100%, 98%, 100%, 99%, 100%, and 99% to the sequences of Alternaria solani, respectively. Combined sequences of ITS, GAPDH, TEF1-α, and RPB2 genes were concatenated and a maximum parsimony tree was constructed with PAUP* v. 4.0 alpha. The results indicated that 11 isolates were clustered together with A. solani (Fig. S2D). Therefore, 11 isolates were identified as A. solani based on their morphological and molecular characteristics. Eleven isolates were inoculated on their host to perform Koch's postulates. The isolates were grown on PDA for six days. Healthy one month old T. mongolicum seedlings were planted in 10 cm flowerpots (Fig. S1B) or the seedlings were moved to Petri dish (Fig. S1C), and their leaves were inoculated with 5 mL of hyphae suspension by smearing method. In addition, seedlings of the same age were treated with sterile water to serve as the control. The inoculated seedlings were moved into an artificial climatic box at 25℃, relative humidity was 70%, with 12 h light/12 h dark condition. Totally 80 seedlings were inoculated with isolates and 15 were used as the control. After 7 days, similar symptoms were observed on the plants inoculated with isolates, while control plants did not produce symptoms. The assays were conducted three times. Furthermore, isolates were re-isolated from the symptomatic leaves, and the colonial morphology was the same as the original isolates (Fig S2 A and B). The recovered isolates were identified as A. solani by amplifying and sequencing a portion of the HIS3 gene. Alternaria solani has been previously reported to cause early blight of potato and other Solanum crops (van der Waals et al. 2004; Zheng et al. 2015). To our knowledge, this is the first report of A. solani causing leaf spot of T. mongolicum in China. This disease must be considered in management practices, and our finding provided a basis for disease prevention and management.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-08-23-1538-PDNDOI Listing

Publication Analysis

Top Keywords

leaf spot
16
isolates
12
symptomatic leaves
8
three times
8
sterile water
8
eleven isolates
8
zheng 2015
8
100% 99%
8
alternaria solani
8
isolates identified
8

Similar Publications

Cercosporidium personatum (CP) causes peanut late leaf spot (LLS) disease with 70% yield losses unless controlled by fungicides. CP grows slowly in culture, exhibiting variable phenotypes. To explain those variations, we analyzed the morphology, genomes, transcriptomes and chemical composition of three morphotypes, herein called RED, TAN, and BROWN.

View Article and Find Full Text PDF

Several mungbean (Vigna radiata (L.) Wilczek) cultivars are susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens Ellis & Martin, and it is necessary to explore resistance sources and understand resistance mechanisms. However, the CLS resistance mechanisms have not yet been explored.

View Article and Find Full Text PDF

Multi-layered Apoplastic Barrier Underlying the Ability Of Na+ Exclusion In Vigna Marina.

Plant Cell Physiol

January 2025

Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.

Soil salinization and ground water depletion are increasingly constraining crop production. Identifying useful mechanisms of salt tolerance is an important step towards development of salt-tolerant crops. Of particular interest are mechanisms that are present in wild crop relatives, as they may have greater stress tolerance than crop species.

View Article and Find Full Text PDF

Biological Characteristics and Fungicide Screening of Causing Mulberry Anthracnose.

Microorganisms

November 2024

Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

Mulberry is an important economic crop in China that is widely planted and has important edible and medicinal value. Anthracnose, a critical leaf disease, severely compromises the yield and quality of mulberry trees. However, there are many kinds of pathogens causing mulberry anthracnose and it is difficult to control.

View Article and Find Full Text PDF

Insight into Antifungal Metabolites from 92p Against Banana Cordana Leaf Spot Caused by .

Biomolecules

November 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.

Banana crop ranks among the most crucial fruit and food crops in tropical and subtropical areas. Despite advancements in production technology, diseases such as cordana leaf spot, caused by , remain a significant challenge, reducing productivity and quality. Traditional chemical controls are becoming less effective due to the development of resistance in target pathogens, which pose significant environmental and health concerns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!