EPR Imaging and Application to Biomedical Sciences: On the 80th Anniversary of the Discovery of EPR.

Mol Imaging Biol

University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, USA.

Published: June 2024

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11307-024-01896-zDOI Listing

Publication Analysis

Top Keywords

epr imaging
4
imaging application
4
application biomedical
4
biomedical sciences
4
sciences 80th
4
80th anniversary
4
anniversary discovery
4
discovery epr
4
epr
2
application
1

Similar Publications

The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm.

View Article and Find Full Text PDF

The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.

View Article and Find Full Text PDF

Size-dependent Nanoparticle Accumulation In Venous Malformations.

J Vasc Anom (Phila)

December 2024

Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Objective: The current treatment of venous malformations (VMs) consists of medications with systemic toxicity and procedural interventions with high technical difficulty and risk of hemorrhage. Using nanoparticles (NPs) to enhance drug delivery to VMs could enhance efficacy and decrease systemic toxicity. NPs can accumulate in tissues with abnormal vasculature, a concept known as the enhanced permeation and retention (EPR) effect.

View Article and Find Full Text PDF

Preclinical Photodynamic Therapy Targeting Blood Vessels with AGuIX Theranostic Nanoparticles.

Cancers (Basel)

November 2024

Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa Street, 31-387 Krakow, Poland.

Glioblastoma multiforme (GBM) is the most common highly aggressive, primary malignant brain tumor in adults. Current experimental strategies include photodynamic therapy (PDT) and new drug delivery technologies such as nanoparticles, which could play a key role in the treatment, diagnosis, and imaging of brain tumors. The purpose of this study was to test the efficacy of PDT using AGuIX-TPP, a polysiloxane-based nanoparticle (AGuIX) that contains TPP (5,10,15,20-tetraphenyl-21H,23H-porphine), in biological models of glioblastoma multiforme and to investigate the vascular mechanisms of action at multiple complexity levels.

View Article and Find Full Text PDF

X-ray triggered bimetallic nanoassemblies as radiosensitizers and STING agonists for a CDT/radio-immunotherapy strategy.

Acta Biomater

December 2024

State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China. Electronic address:

Radiotherapy (RT) is a cornerstone of cancer therapy, but its effectiveness is constrained by dose-limiting toxicity and inadequate systemic immune activation. To overcome these limitations, we have engineered an X-ray-responsive nanoassembly (sMnAu NAs) by cross-linking monodisperse MnAu nanoparticles (NPs) with radiation-responsive diselenide-containing linkers. MnAu alloy NPs not only provide Au NPs for radiosensitization, but also control Mn (0) release, which stimulates Fenton-like reaction for chemodynamic therapy and is transferred into Mn to activate the STING pathway for immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!