A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrocoagulation using Ti/Ti for the remediation and reuse of aqueous Dispersive Blue-79. | LitMetric

The entire ecology is contaminated by the synthetic dyes that are widely utilised in the textile industries. They can be handled using a variety of technologies, but an eco-friendly method called electrocoagulation has been used to prevent additional contamination. Textile wastewater containing disperse dyes are successfully treated in Electrocoagulation (EC) utilizing Al, Fe, and Stainless Steel (SS), but it is not cost effective, also the treated water contains certain mg/L of the metals used, along with dye components, which obstructs the reuse of the same. The effects of initial pH, applied voltage, dye concentration, supporting electrolyte, and treatment time on the colour removal efficiency (CRE) and consumption of energy were examined in EC process followed by activated charcoal filtration (hybrid process) with a monopolar Ti/Ti electrode on the remediation of aqueous solution of Dispersive Blue-79 (dye 3G). The maximum CREobtained was 99.4%, chemical oxygen demand (COD) 93%, and biological oxygen demand (BOD) 85%, under the following optimized operating conditions, applied voltage 15 V, pH = 7, concentration of dye, electrolyte 110 mg/L, 0.2 g/L and time = 15 min. The overall operating cost for the treatment of aqueous dye 3G was 0.455US/m. The mechanism of EC was studied using XPS analysis in the sludge obtained. For the purpose of the reuse, FTIR, AAS, and ICP-OES analysis were done and compared with the aqueous dye 3G, after EC and hybrid process to ensure the maximum removal of the degraded dye components and metal. ICP-OES results showed that there were no traces of metal in the treated aqueous dye 3G using this method. Throughout the study, the experimental outcomes indicated that the hybrid process upgraded the quality of the treated aqueous dye 3G.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-024-12320-yDOI Listing

Publication Analysis

Top Keywords

aqueous dye
16
hybrid process
12
dye
9
dispersive blue-79
8
dye components
8
applied voltage
8
oxygen demand
8
treated aqueous
8
aqueous
6
electrocoagulation ti/ti
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!