A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mycobacterium tuberculosis antigen 85B modifies BCG-induced antituberculosis immunity and favors pathogen survival. | LitMetric

Tuberculosis is one of the deadliest infectious diseases worldwide. Mycobacterium tuberculosis has developed strategies not only to evade host immunity but also to manipulate it for its survival. We investigated whether Mycobacterium tuberculosis exploited the immunogenicity of Ag85B, one of its major secretory proteins, to redirect host antituberculosis immunity to its advantage. We found that administration of Ag85B protein to mice vaccinated with Bacillus Calmette-Guérin impaired the protection elicited by vaccination, causing a more severe infection when mice were challenged with Mycobacterium tuberculosis. Ag85B administration reduced Bacillus Calmette-Guérin-induced CD4 T-cell activation and IFN-γ, CCL-4, and IL-22 production in response to Mycobacterium tuberculosis-infected cells. On the other hand, it promoted robust Ag85B-responsive IFN-γ-producing CD4 T cells, expansion of a subset of IFN-γ/IL-10-producing CD4+FOXP3+Treg cells, differential activation of IL-17/IL-22 responses, and activation of regulatory and exhaustion pathways, including programmed death ligand 1 expression on macrophages. All this resulted in impaired intracellular Mycobacterium tuberculosis growth control by systemic immunity, both before and after the Mycobacterium tuberculosis challenge. Interestingly, Mycobacterium tuberculosis infection itself generated Ag85B-reactive inflammatory immune cells incapable of clearing Mycobacterium tuberculosis in both unvaccinated and Bacillus Calmette-Guérin-vaccinated mice. Our data suggest that Mycobacterium tuberculosis can exploit the strong immunogenicity of Ag85B to promote its own survival and spread. Since Ag85B is normally secreted by replicating bacteria and is commonly found in the lungs of the Mycobacterium tuberculosis-infected host, our findings may advance the understanding on the mechanisms of Mycobacterium tuberculosis pathogenesis and immune evasion.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jleuko/qiae014DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
40
mycobacterium
12
tuberculosis
10
antituberculosis immunity
8
immunogenicity ag85b
8
mycobacterium tuberculosis-infected
8
ag85b
5
tuberculosis antigen
4
antigen 85b
4
85b modifies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!