Observing Relative Homotopic Degeneracy Conversions with Circuit Metamaterials.

Phys Rev Lett

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Published: January 2024

Making nodal lines (NLs) deterministic is quite challenging because directly probing them requires bulk momentum resolution. Here, based on the general scattering theory, we show that the Bloch modes of the circuit metamaterials can be selectively excited with a proper source. Consequently, the transport measurement for characterizing the circuit band structure is momentum resolved. Facilitated by this bulk resolution, we systematically demonstrate the degeneracy conversions ruled by the relative homotopy, including the conversions between Weyl points (WPs) and NLs, and between NLs. It is experimentally shown that two WPs with opposite chirality in a two-band model surprisingly convert into an NL rather than annihilating. And the multiband anomaly (due to the delicate property) in the NL-to-NL conversions is also observed, which in fact is captured by the non-Abelian relative homotopy. Additionally, the physical effects owing to the conversions, like the Fermi arc connecting NLs and the parallel transport of eigenstates, are discussed as well. Other types of degeneracy conversions, such as those induced by spin-orbit coupling or symmetry breaking, are directly amenable to the proposed circuit platform.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.016605DOI Listing

Publication Analysis

Top Keywords

degeneracy conversions
12
circuit metamaterials
8
relative homotopy
8
conversions
6
observing relative
4
relative homotopic
4
homotopic degeneracy
4
circuit
4
conversions circuit
4
metamaterials making
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!