The ideal superconductor provides a pristine environment for the delicate states of a quantum computer: because there is an energy gap to excitations, there are no spurious modes with which the qubits can interact, causing irreversible decay of the quantum state. As a practical matter, however, there exists a high density of excitations out of the superconducting ground state even at ultralow temperature; these are known as quasiparticles. Observed quasiparticle densities are of order 1  μm^{-3}, tens of orders of magnitude greater than the equilibrium density expected from theory. Nonequilibrium quasiparticles extract energy from the qubit mode and can induce dephasing. Here we show that a dominant mechanism for quasiparticle poisoning is direct absorption of high-energy photons at the qubit junction. We use a Josephson junction-based photon source to controllably dose qubit circuits with millimeter-wave radiation, and we use an interferometric quantum gate sequence to reconstruct the charge parity of the qubit. We find that the structure of the qubit itself acts as a resonant antenna for millimeter-wave radiation, providing an efficient path for photons to generate quasiparticles. A deep understanding of this physics will pave the way to realization of next-generation superconducting qubits that are robust against quasiparticle poisoning.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.017001DOI Listing

Publication Analysis

Top Keywords

quasiparticle poisoning
12
superconducting qubits
8
millimeter-wave radiation
8
qubit
5
quasiparticle
4
poisoning superconducting
4
qubits resonant
4
resonant absorption
4
absorption pair-breaking
4
pair-breaking photons
4

Similar Publications

Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events can produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array.

View Article and Find Full Text PDF

A stress-induced source of phonon bursts and quasiparticle poisoning.

Nat Commun

July 2024

High Energy Physics, Argonne National Laboratory, Lemont, 60439, IL, USA.

Article Synopsis
  • Superconducting qubits can get messed up by tiny energy sources that break apart the pairs of particles needed for superconductivity, making a problem known as "quasiparticle poisoning."
  • Researchers found that a silicon crystal glued to its holder has way more low-energy sound events (called phonons) compared to a similar crystal that wasn't glued, which could affect how well these systems work.
  • The extra phonon events in the glued crystal get less frequent over time, suggesting that the stress from the glue is causing these disturbances and may be impacting other scientific devices too.
View Article and Find Full Text PDF

The ideal superconductor provides a pristine environment for the delicate states of a quantum computer: because there is an energy gap to excitations, there are no spurious modes with which the qubits can interact, causing irreversible decay of the quantum state. As a practical matter, however, there exists a high density of excitations out of the superconducting ground state even at ultralow temperature; these are known as quasiparticles. Observed quasiparticle densities are of order 1  μm^{-3}, tens of orders of magnitude greater than the equilibrium density expected from theory.

View Article and Find Full Text PDF

Quantum Computing with Majorana Kramers Pairs.

Phys Rev Lett

November 2022

Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

We propose a universal gate set acting on a qubit formed by the degenerate ground states of a Coulomb-blockaded time-reversal invariant topological superconductor island with spatially separated Majorana Kramers pairs: the "Majorana Kramers qubit." All gate operations are implemented by coupling the Majorana Kramers pairs to conventional superconducting leads. Interestingly, in such an all-superconducting device, the energy gap of the leads provides another layer of protection from quasiparticle poisoning independent of the island charging energy.

View Article and Find Full Text PDF

Identifying, quantifying, and suppressing decoherence mechanisms in qubits are important steps towards the goal of engineering a quantum computer or simulator. Superconducting circuits offer flexibility in qubit design; however, their performance is adversely affected by quasiparticles (broken Cooper pairs). Developing a quasiparticle mitigation strategy compatible with scalable, high-coherence devices is therefore highly desirable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!