The human ventral occipito-temporal cortex (VOTC) has evolved into specialized regions that process specific categories, such as words, tools, and animals. The formation of these areas is driven by bottom-up visual and top-down nonvisual experiences. However, the specific mechanisms through which top-down nonvisual experiences modulate category-specific regions in the VOTC are still unknown. To address this question, we conducted a study in which participants were trained for approximately 13 h to associate three sets of novel meaningless figures with different top-down nonvisual features: the wordlike category with word features, the non-wordlike category with nonword features, and the visual familiarity condition with no nonvisual features. Pre- and post-training functional MRI (fMRI) experiments were used to measure brain activity during stimulus presentation. Our results revealed that training induced a categorical preference for the two training categories within the VOTC. Moreover, the locations of two training category-specific regions exhibited a notable overlap. Remarkably, within the overlapping category-specific region, training resulted in a dissociation in activation intensity and pattern between the two training categories. These findings provide important insights into how different nonvisual categorical information is encoded in the human VOTC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2024.120520 | DOI Listing |
Curr Biol
November 2024
Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QB, UK; Imaging Centre for Excellence (ICE), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G51 4LB, UK. Electronic address:
Listening to natural auditory scenes leads to distinct neuronal activity patterns in the early visual cortex (EVC) of blindfolded sighted and congenitally blind participants. This pattern of sound decoding is organized by eccentricity, with the accuracy of auditory information increasing from foveal to far peripheral retinotopic regions in the EVC (V1, V2, and V3). This functional organization by eccentricity is predicted by primate anatomical connectivity, where cortical feedback projections from auditory and other non-visual areas preferentially target the periphery of early visual areas.
View Article and Find Full Text PDFNeuroimage
February 2024
State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China. Electronic address:
The human ventral occipito-temporal cortex (VOTC) has evolved into specialized regions that process specific categories, such as words, tools, and animals. The formation of these areas is driven by bottom-up visual and top-down nonvisual experiences. However, the specific mechanisms through which top-down nonvisual experiences modulate category-specific regions in the VOTC are still unknown.
View Article and Find Full Text PDFPLoS Biol
December 2023
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America.
Proc Natl Acad Sci U S A
October 2023
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
In modeling vision, there has been a remarkable progress in recognizing a range of scene components, but the problem of analyzing full scenes, an ultimate goal of visual perception, is still largely open. To deal with complete scenes, recent work focused on the training of models for extracting the full graph-like structure of a scene. In contrast with scene graphs, humans' scene perception focuses on selected structures in the scene, starting with a limited interpretation and evolving sequentially in a goal-directed manner [G.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!