Entomopathogenic nematodes (EPNs) are roundworms that parasitize insects with the aid of symbiotic bacteria. These nematodes have been used both as model organisms and for biological control of pests. The specialized third stage of an EPN, known as an infective juvenile (IJ) must forage to find a host with strategies varying from species to species (cruising, ambushing, and intermediate). Some IJs move more than others to find a host, despite an increased risk of predation and desiccation. This hints at potential underlying benefits (e.g., increased invasion) for EPNs that move more. We assessed whether EPNs that moved farther down a soil column also exhibit higher levels of invasion when compared to nematodes that remained at or near their point of origin. We found that movers in the cruisier and intermediate species: Steinernema riobrave, Heterorhabditis bacteriophora, and H. indica had higher invasion rates compared to their counterparts that did not move. S. carpocapsae, an ambusher, did not exhibit invasion differences between EPNs that moved versus those that did not. For the three cruiser/intermediate EPNs we tested, our results support our hypothesis that EPNs that tend to move more enjoy related benefits such as increased invasion potential. Further studies are required to explore other parameters that may interact with movement. The results of this study can potentially be used to develop EPN strains that move more and invade more, and thus can potentially be more effective biological control agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jip.2024.108060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!