Systemic iron overload is a common clinical challenge leading to significantly serious complications in patients with acute myeloid leukemia (AML), which affects both the quality of life and the overall survival of patients. Symptoms can be relieved after iron chelation therapy in clinical practice. However, the roles and mechanisms of iron overload on the initiation and progression of leukemia remain elusive. Here we studied the correlation between iron overload and AML clinical outcome, and further explored the role and pathophysiologic mechanism of iron overload in AML by using two mouse models: an iron overload MLL-AF9-induced AML mouse model and a nude xenograft mouse model. Patients with AML had an increased ferritin level, particularly in the myelomonocytic (M4) or monocytic (M5) subtypes. High level of iron expression correlated with a worsened prognosis in AML patients and a shortened survival time in AML mice. Furthermore, iron overload increased the tumor load in the bone marrow (BM) and extramedullary tissues by promoting the proliferation of leukemia cells through the upregulation of FOS. Collectively, our findings provide new insights into the roles of iron overload in AML. Additionally, this study may provide a potential therapeutic target to improve the outcome of AML patients and a rationale for the prospective evaluation of iron chelation therapy in AML.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2024.216652DOI Listing

Publication Analysis

Top Keywords

iron overload
32
overload aml
12
iron
11
aml
10
acute myeloid
8
myeloid leukemia
8
upregulation fos
8
iron chelation
8
chelation therapy
8
aml mouse
8

Similar Publications

Osteosarcoma is a common malignant tumor found in adolescents, characterized by a high metastatic potential and poor prognosis, but it is sensitive to radiotherapy and chemotherapy. Ferroptosis is a novel form of regulated cell death induced by excessive iron accumulation, leading to lipid peroxidation that results in cellular dysfunction and death. Naringenin is a flavonoid known for its anti-cancer properties, yet its role in osteosarcoma has not been thoroughly studied.

View Article and Find Full Text PDF

The benefits and harms of oral iron supplementation in non-anaemic pregnant women: a systematic review and meta-analysis.

Fam Pract

January 2025

Nuffield Department of Primary Care Health Sciences, Centre for Evidence Based Medicine, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom.

Background: Iron deficiency during pregnancy poses a significant risk to both maternal and foetal health. Current international guidelines provide discrepant advice on antenatal iron supplementation for non-anaemic women.

Objective: We aimed to quantify the benefits and harms of routine antenatal supplementation in non-anaemic women.

View Article and Find Full Text PDF

Menopause is a natural biological aging process characterized by the loss of ovarian follicular function and decrease estrogen levels. These hormonal fluctuations are associated with increased iron levels, which ultimately lead to iron accumulation. This study aims to investigate the effects of Deferasirox on iron homeostasis and hematopoiesis in ovariectomized rats with iron accumulation.

View Article and Find Full Text PDF

This study conducts a bibliometric analysis (BA) to map the research landscape surrounding chronic kidney disease (CKD) and iron overload over the past decade. Utilizing PubMed as the primary database, a systematic search strategy was developed using BA guidelines, incorporating keyword and MeSH term refinements for comprehensive data retrieval. A Boolean operator-based search strategy was applied, capturing literature from 2014 to the first quarter of 2024, with inclusion criteria focusing on articles and review articles published in English.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!