Glioblastoma (GBM) is a highly aggressive type of primary brain cancer with a poor prognosis, and despite intensive research, survival rates have not significantly improved. Non-coding RNAs (ncRNAs) are emerging as critical regulators of GBM pathogenesis, including angiogenesis, which is essential for tumor growth and invasion. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) have been identified as regulators of angiogenesis in GBM. miRNAs such as miR-21, miR-10b, and miR-26a promote angiogenesis by targeting anti-angiogenic factors, while lncRNAs such as H19 and MALAT1 inhibit angiogenesis by regulating pro-angiogenic factors. CircRNAs, such as circSMARCA5 and circBACH2, also regulate angiogenesis through various mechanisms. Similarly, signaling pathways such as the vascular endothelial growth factor (VEGF) pathway play critical roles in angiogenesis and have been targeted for GBM therapy. However, resistance to anti-angiogenic therapies is a significant obstacle in clinical practice. Developing novel therapeutic strategies targeting ncRNAs and angiogenesis is a promising approach for GBM. Potential targets include miRNAs, lncRNAs, circRNAs, and downstream signaling pathways that regulate angiogenesis. This review highlights the critical roles of ncRNAs and angiogenesis in GBM pathogenesis and the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2024.130567 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!