Recent research indicates that combining 3D bioprinting and small extracellular vesicles (sEVs) offers a promising 'cell-free' regenerative medicine approach for various tissue engineering applications. Nonetheless, the majority of existing research has focused on bioprinting of sEVs sourced from cell lines. There remains a notable gap in research regarding the bioprinting of sEVs derived from primary human periodontal cells and their potential impact on ligamentous and osteogenic differentiation. Here, we investigated the effect of 3D bioprinted periodontal cell sEVs constructs on the differentiation potential of human buccal fat pad-derived mesenchymal stromal cells (hBFP-MSCs). Periodontal cell-derived sEVs were enriched by size exclusion chromatography (SEC) with particle-shaped morphology, and characterized by being smaller than 200 nm in size and CD9/CD63/CD81 positive, from primary human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (hGFs). The sEVs were then 3D bioprinted in 10 % gelatin methacryloyl (GelMA) via microextrusion bioprinting. Release of sEVs from bioprinted constructs was determined by DiO-labelling and confocal imaging, and CD9 ELISA. Attachment and ligament/osteogenic/cementogenic differentiation of hBFP-MSCs was assessed on bioprinted GelMA, without and with sEVs (GelMA/hPDLCs-sEVs and GelMA/hGFs-sEVs), scaffolds. hBFP-MSCs seeded on the bioprinted sEVs constructs spread well with significantly enhanced focal adhesion, mechanotransduction associated gene expression, and ligament and osteogenesis/cementogenesis differentiation markers in GelMA/hPDLCs-sEVs, compared to GelMA/hGFs-sEVs and GelMA groups. A 2-week osteogenic and ligamentous differentiation showed enhanced ALP staining, calcium formation and toluidine blue stained cells in hBFP-MSCs on bioprinted GelMA/hPDLCs-sEVs constructs compared to the other two groups. The proof-of-concept data from this study supports the notion that 3D bioprinted GelMA/hPDLCs-sEVs scaffolds promote cell attachment, as well as ligamentous, osteogenic and cementogenic differentiation, of hBFP-MSCs in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2024.213770 | DOI Listing |
Sci Adv
January 2025
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
December 2024
Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
The effective management of cancer pain continues to be a challenge because of our limited understanding of cancer pain mechanisms and, in particular, how cancer cells interact with neurons to produce pain. In a study published in , Inyang used a mouse model of human papillomavirus (HPV1)-induced oropharyngeal squamous cell carcinoma to show a role for cancer cell-derived extracellular vesicles (cancer sEVs) in cancer pain. They found that inhibiting the release of sEVs reduced spontaneous and evoked pain behaviors, and that pain produced by sEVs is due to activation of TRPV1 channels.
View Article and Find Full Text PDFCell Death Dis
January 2025
School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
Small extracellular vesicles (sEVs), carrying PD-L1, have been implicated in immune evasion and tumor progression. However, understanding how PD-L1 sEVs are secreted still needs to be improved. We found that the secretion dynamics of PD-L1 sEVs is similar to that of other sEVs.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.
Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Spine, Orthopaedic Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!