Investigating the antibiotic resistance genes and their potential risks in the megacity water environment: A case study of Shenzhen Bay Basin, China.

J Hazard Mater

State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China. Electronic address:

Published: March 2024

Antibiotic resistance genes (ARGs) constitute emerging pollutants and pose serious risks to public health. Anthropogenic activities are recognized as the main driver of ARG dissemination in coastal regions. However, the distribution and dissemination of ARGs in Shenzhen Bay Basin, a typical megacity water environment, have been poorly investigated. Here, we comprehensively profiled ARGs in Shenzhen Bay Basin using metagenomic approaches, and estimated their associated health risks. ARG profiles varied greatly among different sampling locations with total abundance ranging from 2.79 × 10 (Shenzhen Bay sediment) to 1.04 (hospital sewage) copies per 16S rRNA gene copy, and 45.4% of them were located on plasmid-like sequences. Sewage treatment plants effluent and the corresponding tributary rivers were identified as the main sources of ARG contamination in Shenzhen Bay. Mobilizable plasmids and complete integrons carrying various ARGs probably participated in the dissemination of ARGs in Shenzhen Bay Basin. Additionally, 19 subtypes were assigned as high-risk ARGs (Rank I), and numerous ARGs were identified in potential human-associated pathogens, such as Burkholderiaceae, Rhodocyclaceae, Vibrionaceae, Pseudomonadaceae, and Aeromonadaceae. Overall, Shenzhen Bay represented a higher level of ARG risk than the ocean environment based on quantitative risk assessment. This study deepened our understanding of the ARGs and the associated risks in the megacity water environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133536DOI Listing

Publication Analysis

Top Keywords

shenzhen bay
28
bay basin
16
megacity water
12
water environment
12
args shenzhen
12
antibiotic resistance
8
resistance genes
8
risks megacity
8
args
8
dissemination args
8

Similar Publications

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

Modular organization of enhancer network provides transcriptional robustness in mammalian development.

Nucleic Acids Res

January 2025

State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen, Fujian 361102, China.

Enhancer clusters, pivotal in mammalian development and diseases, can organize as enhancer networks to control cell identity and disease genes; however, the underlying mechanism remains largely unexplored. Here, we introduce eNet 2.0, a comprehensive tool for enhancer networks analysis during development and diseases based on single-cell chromatin accessibility data.

View Article and Find Full Text PDF

Proteolysis-targeting influenza vaccine strains induce broad-spectrum immunity and in vivo protection.

Nat Microbiol

January 2025

State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses.

View Article and Find Full Text PDF

is a heterotrophic bacterium commonly found in diverse marine environments. Here, we report the complete genome sequence of strain SOCE 003, which is 5,154,101 bp long, encoding 5,524 annotated protein-coding genes, 39 tRNAs, and 8 rRNAs. This genome information will help us understand the ecology of .

View Article and Find Full Text PDF

Integration of Motion and Stillness: A Paradigm Shift in Constructing Nearly Planar NIR-II AIEgen with Ultrahigh Molar Absorptivity and Photothermal Effect for Multimodal Phototheranostics.

J Am Chem Soc

January 2025

Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!