Circadian misalignment (CM) caused by shift work can increase the risk of mood impairment. However, the pathological mechanisms underlying these deficits remain unclear. In the present study, we used long-term variable photoperiod (L-VP) in wild-type mice to better simulate real-life shift patterns and study its effects on the prefrontal cortex (PFC) and hippocampus, which are closely related to mood function. The results showed that exposure to L-VP altered the activity/rest rhythms of mice, by eliciting phase delay and decreased amplitude of the rhythms. Mice with CM developed anxiety and depression-like manifestations and the number of mature oligodendrocytes (OL) was reduced in the medial prefrontal cortex and hippocampal CA1 regions. Mood impairment and OL reduction worsened with increased exposure time to L-VP, while normal photoperiod restoration had no effect. Mechanistically, we identified upregulation of Bmal1 in the PFC and hippocampal regions of CM mice at night, when genes related to mature OL and myelination should be highly expressed. CM mice exhibited significant inhibition of the protein kinase B (AKT)/mTOR signaling pathway, which is directly associated to OL differentiation and maturation. Furthermore, we demonstrated in the OL precursor cell line Oli-Neu that overexpression of Bmal1 inhibits AKT/mTOR pathway and reduces the expression of genes OL differentiation. In conclusion, BMAL1 might play a critical role in CM, providing strong research evidence for BMAL1 as a potential target for CM therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpi.12935 | DOI Listing |
Chronobiol Int
January 2025
Laboratory of Braintime, Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan.
The intricate relationship between circadian rhythms and mood is well-established. Disturbances in circadian rhythms and sleep often precede the development of mood disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and seasonal affective disorder (SAD). Two primary factors, intrinsic circadian clocks and light, drive the natural fluctuations in mood throughout the day, mirroring the patterns of sleepiness and wakefulness.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medicine, University of Chicago, Chicago, IL, USA.
Inadequate information exists regarding physiological changes post-COVID-19 infection. We used smart beds to record biometric data following COVID-19 infection in nonhospitalized patients. Recordings of daily biometric signals over 14 weeks in 59 COVID-positive participants' homes in 2020 were compared with the same participants' data from 2019.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
The circadian clock regulates physiological and biochemical processes in nearly every species. Sexual and reproductive behaviors are two processes controlled by the circadian timing system. Evidence supporting the importance of proper clock function on fertility comes from several lines of work demonstrating that misalignment of biological rhythms or disrupted function of the body's master clock, such as occurs from repeated shift work or chronic jet lag, negatively impacts reproduction by interfering with both male and female fertility.
View Article and Find Full Text PDFBiofactors
January 2025
Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain.
Current lifestyles include calorie-dense diets and late-night food intake, which can lead to circadian misalignment. Our group recently demonstrated that sweet treats before bedtime alter the clock system in healthy rats, increasing metabolic risk factors. Therefore, we aimed to assess the impact of the sweet treat consumption time on the clock system in rats fed a cafeteria diet (CAF).
View Article and Find Full Text PDFSleep
January 2025
Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State University, College of Medicine, Hershey PA, USA.
Study Objectives: Although heart rate variability (HRV), a marker of cardiac autonomic modulation (CAM), is known to predict cardiovascular morbidity, the circadian timing of sleep (CTS) is also involved in autonomic modulation. We examined whether circadian misalignment is associated with blunted HRV in adolescents as a function of entrainment to school or on-breaks.
Methods: We evaluated 360 subjects from the Penn State Child Cohort (median 16y) who had at least 3-night at-home actigraphy (ACT), in-lab 9-h polysomnography (PSG) and 24-h Holter-monitoring heart rate variability (HRV) data.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!