Slow closure of Earth's carbon cycle.

Proc Natl Acad Sci U S A

Lorenz Center, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.

Published: January 2024

AI Article Synopsis

  • Carbon near the Earth's surface goes through a cycle where organic carbon is produced (sequestering CO2) and consumed (releasing CO2), with microbes playing a role in this process.
  • The degradation of organic matter slows down as it gets older, leading to distinct patterns in how quickly various types of organic matter decay and how microbial populations change over time.
  • The research suggests that these aging effects in the carbon cycle are similar to how disordered systems approach equilibrium, impacting oxygen accumulation in the atmosphere by preventing complete breakdown of organic carbon in sediments.

Article Abstract

Carbon near the Earth's surface cycles between the production and consumption of organic carbon; the former sequesters carbon dioxide while the latter releases it. Microbes attempt to close the loop, but the longer organic matter survives, the slower microbial degradation becomes. This aging effect leaves observable quantitative signatures: Organic matter decays at rates that are inversely proportional to its age, while microbial populations and concentrations of organic carbon in ocean sediments decrease at distinct powers of age. Yet mechanisms that predict this collective organization remain unknown. Here, I show that these and other observations follow from the assumption that the decay of organic matter is limited by progressively rare extreme fluctuations in the energy available to microbes for decomposition. The theory successfully predicts not only observed scaling exponents but also a previously unobserved scaling regime that emerges when microbes subsist on the minimum energy flux required for survival. The resulting picture suggests that the carbon cycle's age-dependent dynamics are analogous to the slow approach to equilibrium in disordered systems. The impact of these slow dynamics is profound: They preclude complete oxidation of organic carbon in sediments, thereby freeing molecular oxygen to accumulate in the atmosphere.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823250PMC
http://dx.doi.org/10.1073/pnas.2310998121DOI Listing

Publication Analysis

Top Keywords

organic carbon
12
organic matter
12
carbon
7
organic
6
slow closure
4
closure earth's
4
earth's carbon
4
carbon cycle
4
cycle carbon
4
carbon earth's
4

Similar Publications

Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.

View Article and Find Full Text PDF

The local environment of the active site, such as the confinement of hydronium ions within zeolite pores, significantly influences catalytic turnover, similar to enzyme functionality. This study explores these effects in the hydrolysis of guaiacols─lignin-derived compounds─over zeolites in water. In addition to the interesting catechol products, this reaction is advantageous for study due to its bimolecular hydrolysis pathway, which involves a single energy barrier and no intermediates, simplifying kinetic studies and result interpretation.

View Article and Find Full Text PDF

The fate and degradation of organic matter in aquatic systems is a vital link in nutrient cycling and sedimentation processes influenced by exogenous and endogenous factors, such as inputs from upstream sources, sediment suspension, and the decomposition of aquatic organisms. The interplay of organic carbon, microbes, and environmental factors shapes the distribution and degradation of organic matter. Characterizing the source distribution of sedimentary organic matter in aquatic systems using novel proxies can unravel new insights into the mechanisms that control its dispersal, preservation and fate, which is essential to understanding the global carbon and nitrogen cycles.

View Article and Find Full Text PDF

Zn(TFSI)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries.

Nanomicro Lett

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.

Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.

View Article and Find Full Text PDF

Constructing fecal-derived electrocatalysts for CO upcycling: simultaneously tackling waste and carbon emissions.

Nanoscale

January 2025

School of Chemistry and Chemical Engineering, School of the Environment, State Key Laboratory of Pollution Control & Resource Reuse, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.

The escalating global fecal waste and rising CO levels present dual significant environmental challenges, further intensified by urbanization. Traditional fecal waste management methods are insufficient, particularly in addressing the related health risks and environmental threats. This study explores the synthesis of biochar from pig manure as a carbon substrate to disperse and stabilize Cu nanoparticles, resulting in the formation of an efficient Cu-NB-2000 electrocatalyst for electrocatalytic CO reduction (ECR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!