Background: Loa loa filariasis (loiasis) is still considered a relatively benign disease. However, recent epidemiologic data suggest increased mortality and morbidity in L. loa infected individuals. We aimed to examine whether the density of L. loa microfilariae (mfs) in the blood is associated with cardiovascular disease.
Methodology: Using a point-of-care device (pOpmètre), we conducted a cross-sectional study to assess arterial stiffness and peripheral arterial disease (PAD) in 991 individuals living in a loiasis-endemic rural area in the Republic of the Congo. Microfilaremic individuals were matched for age, sex and village of residence with 2 amicrofilaremic subjects. We analyzed markers of arterial stiffness (Pulse-Wave Velocity, PWV), PAD (Ankle-Brachial Index, ABI) and cardiovascular health (Pulse Pressure, PP). The analysis considered parasitological results (L. loa microfilarial density [MFD], soil-transmitted helminths infection, asymptomatic malaria and onchocerciasis), sociodemographic characteristics and known cardiovascular risk factors (body mass index, smoking status, creatininemia, blood pressure).
Principal Findings: Among the individuals included in the analysis, 192/982 (19.5%) and 137/976 (14.0%) had a PWV or an ABI considered out of range, respectively. Out of range PWV was associated with younger age, high mean arterial pressure and high L. loa MFD. Compared to amicrofilaremic subjects, those with more than 10,000 mfs/mL were 2.17 times more likely to have an out of range PWV (p = 0.00). Factors significantly associated with PAD were older age, low pulse rate, low body mass index, smoking, and L. loa microfilaremia. Factors significantly associated with an elevation of PP were older age, female sex, high average blood pressure, low pulse rate and L. loa microfilaremia.
Conclusion: A potential link between high L. loa microfilaremia and cardiovascular health deterioration is suggested. Further studies are required to confirm and explore this association.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10830006 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0011915 | DOI Listing |
Sci Rep
January 2025
Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.
Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Oregon, Eugene, OR, USA.
Background: Stiffening of the large arteries is a hallmark feature of vascular aging and is associated with cognitive impairment and Alzheimer's disease pathology. Increased large artery stiffness leads to higher-than-normal pulse pressure in the cerebral circulation, damaging endothelial cells. It is known that short-term exposure to stiffer large arteries causes cerebral artery endothelial dysfunction and hypoperfusion in young mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: In humans, larger artery stiffening is associated with increased tau phosphorylation and neurodegeneration. However, because arterial stiffness often co-occurs with other age-related conditions like hypertension, atherosclerosis, and diabetes, it is nearly impossible to distill the underlying mechanisms specifically linking arterial stiffening to abnormal brain function. We leveraged a surgical mouse model of larger artery stiffening and used it concurrently with a transgenic Alzheimer's disease (AD) mouse model of tau pathology to investigate the impact of larger artery stiffening on cognition.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Oregon, Eugene, OR, USA.
Background: Elevated arterial pulse pressure (PP) is associated with cognitive decline and Alzheimer's disease (AD). High PP damages the brain vasculature by causing endothelial cell dysfunction. Stiffer cerebral arteries have an impaired ability to dampen PP, which transmits the pulsatility further into the microvasculature, where it can damage brain tissue.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD, USA.
Background: Early vascular aging (EVA), manifesting as increases in central arterial stiffness and BP, is associated with cognitive impairment in humans. EVA and cognitive impairment occurs in Dahl salt-sensitive (DSS) rats consuming a normal salt (NS) diet with an advancing age. Quercetin (QRC), a flavonoid with anti-oxidant, anti-inflammatory and senolytic properties, previously shown to reduce salt-sensitive hypertension in DSS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!