Bi2Te3, as a topological insulator, is able to support plasmonic emission in the visible spectral range. Thin Bi2Te3 flakes can be exfoliated directly from a Bi2Te3 crystal, and the shape of Bi2Te3 flakes can be further modified by focused ion beam milling. Therefore, we have designed a Bi2Te3 triangular antenna with distinct tip angles for the application of plasmonic resonance. The plasmonic emission of the Bi2Te3 triangular antenna is excited and investigated by cathodoluminescence in the scanning electron microscope. Enhanced tip plasmons have been observed from distinct tips with angles of 20º, 36º, 54º, 70º, and 90º, respectively. Due to the confinement of geometric boundaries for oscillating charges, the resonant peak position of tip plasmon with a smaller angle has a blue shift. Moreover, the dependence of plasmonic behavior on the excitation position has been discovered as well. This research provides a unique approach to fabricate Bi2Te3 nanostructures and manipulate the corresponding plasmonic properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798455 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291251 | PLOS |
PLoS One
January 2024
Department of Physics, University of Arkansas, Fayetteville, Arkansas, United States of America.
Bi2Te3, as a topological insulator, is able to support plasmonic emission in the visible spectral range. Thin Bi2Te3 flakes can be exfoliated directly from a Bi2Te3 crystal, and the shape of Bi2Te3 flakes can be further modified by focused ion beam milling. Therefore, we have designed a Bi2Te3 triangular antenna with distinct tip angles for the application of plasmonic resonance.
View Article and Find Full Text PDFSci Adv
May 2019
Department of Physics, Tsinghua University, Beijing 100084, China.
The surface of a three-dimensional topological insulator (TI) hosts two-dimensional massless Dirac fermions (DFs), the gapless and spin-helical nature of which leads to their high transmission through surface defects or potential barriers. Here, we report the behaviors of topological surface states (TSS) in a triangular quantum corral (TQC) which, unlike a circular corral, is supposed to be totally transparent for DFs. By real-space mapping of the electronic structure of TQCs, both the trapping and detrapping behaviors of the TSS are observed.
View Article and Find Full Text PDFJ Appl Crystallogr
April 2017
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic.
The twin distribution in topological insulators BiTe and BiSe was imaged by electron backscatter diffraction (EBSD) and scanning X-ray diffraction microscopy (SXRM). The crystal orientation at the surface, determined by EBSD, is correlated with the surface topography, which shows triangular pyramidal features with edges oriented in two different orientations rotated in the surface plane by 60°. The bulk crystal orientation is mapped out using SXRM by measuring the diffracted X-ray intensity of an asymmetric Bragg peak using a nano-focused X-ray beam scanned over the sample.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!