The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 coronavirus and the perpetual rise of new variants warrant investigation of the molecular and structural details of the infection process and modulation of the host defense by viral proteins. This Letter reports the combined experimental and computational approaches to provide key insights into the structural and functional basis of Nsp1's association with different cyclophilins and FKBPs in regulating COVID-19 infection. We demonstrated the real-time stability and functional dynamics of the Nsp1-CypA/FKBP1A complex and investigated the repurposing of potential inhibitors that could block these interactions. Overall, we provided insights into the inhibitory role Nsp1 in downstream interferon production, a key aspect for host defense that prevents the SARS-CoV-2 or related family of corona virus infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c02959 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!