A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EvoImp: Multiple Imputation of Multi-label Classification data with a genetic algorithm. | LitMetric

Missing data is a prevalent problem that requires attention, as most data analysis techniques are unable to handle it. This is particularly critical in Multi-Label Classification (MLC), where only a few studies have investigated missing data in this application domain. MLC differs from Single-Label Classification (SLC) by allowing an instance to be associated with multiple classes. Movie classification is a didactic example since it can be "drama" and "bibliography" simultaneously. One of the most usual missing data treatment methods is data imputation, which seeks plausible values to fill in the missing ones. In this scenario, we propose a novel imputation method based on a multi-objective genetic algorithm for optimizing multiple data imputations called Multiple Imputation of Multi-label Classification data with a genetic algorithm, or simply EvoImp. We applied the proposed method in multi-label learning and evaluated its performance using six synthetic databases, considering various missing values distribution scenarios. The method was compared with other state-of-the-art imputation strategies, such as K-Means Imputation (KMI) and weighted K-Nearest Neighbors Imputation (WKNNI). The results proved that the proposed method outperformed the baseline in all the scenarios by achieving the best evaluation measures considering the Exact Match, Accuracy, and Hamming Loss. The superior results were constant in different dataset domains and sizes, demonstrating the EvoImp robustness. Thus, EvoImp represents a feasible solution to missing data treatment for multi-label learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798481PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297147PLOS

Publication Analysis

Top Keywords

missing data
16
multi-label classification
12
genetic algorithm
12
data
9
multiple imputation
8
imputation multi-label
8
classification data
8
data genetic
8
data treatment
8
proposed method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!