Background: Nitrous oxide has shown potentially as an efficacious intervention for treatment-resistant depression, yet there remains insufficient evidence pertaining to repeated administration of nitrous oxide over time and active placebo-controlled studies with optimal blinding. Thus, we aim to examine the feasibility and preliminary efficacy of a six-week follow up study examining the effects of a 4 week course of weekly administered nitrous oxide as compared to the active placebo, midazolam.
Methods: In this randomized, active placebo-controlled, pilot trial, 40 participants with treatment-resistant depression will receive either inhaled nitrous oxide (1 hour at 50% concentration) plus intravenous saline (100mL) or inhaled oxygen (1 hour at 50% concentration) plus intravenous midazolam (0.02 mg/kg in 100mL, up to 2mg) once per week, for 4 consecutive weeks. Participants will be followed up for 6 weeks starting from the first treatment visit. Primary feasibility outcomes include recruitment rate, withdrawal rate, adherence, missing data, and adverse events. The primary exploratory clinical outcome is change in Montgomery-Åsberg Depression Rating Scale (MADRS) score at day 42 of the study. Other exploratory clinical outcomes include remission (defined as MADRS score <10), response (defined as ≥ 50% reduction in MADRS score), and adverse side effects.
Discussion: This pilot study will provide valuable information regarding the feasibility and preliminary efficacy of repeated nitrous oxide administration over time for treatment-resistant depression. If feasible, this study will inform the design of a future definitive trial of nitrous oxide as an efficacious and fast-acting treatment for treatment-resistant depression.
Trial Registration: ClinicalTrials.gov NCT04957368. Registered on July 12, 2021.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798444 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297330 | PLOS |
J Clin Neurol
January 2025
Department of Neurology, Ajou University Medical Center, Ajou University School of Medicine, Suwon, Korea.
ACS Nano
January 2025
Department of Chemistry, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada.
Reactive oxygen species (ROS) play fundamental roles in various biological and chemical processes in nature and industries, including cell signaling, disease development and aging, immune defenses, environmental remediation, pharmaceutical syntheses, metal corrosion, energy production, etc. As such, their detection is of paramount importance, but their accurate identification and quantification are technically challenging due to their transient nature with short lifetimes and low steady-state concentrations. As a highly sensitive and selective analytical technique, surface-enhanced Raman spectroscopy (SERS) is promising for detecting ROS in real-time, enabling in situ monitoring of ROS-involved electrochemical and biochemical events with exceptional resolution.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
School of Health and Human Performance, Dalhousie University, Halifax, NS B3H 4R2, Canada.
Canada, as one of the largest oil and gas producer in the world, is responsible for large emissions of methane, a powerful greenhouse gas. At low levels, methane is not a direct threat to human health; however, human health is affected by exposure to pollutants co-emitted with methane. The objectives of this research were to estimate and map pollutants emitted by the oil and gas industry, to assess the demographic of the population exposed to oil and gas activities, and to characterize the impact of well density on cardiovascular- and respiratory-related outcomes with a focus on Alberta.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2024
Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Considerable attention has recently been given to the contribution of the greenhouse gas (GHG) emissions of the healthcare sector to climate change. GHGs used in medical practice are regularly released into the atmosphere and contribute to elevations in global temperatures that produce detrimental effects on the environment and human health. Consequently, a comprehensive assessment of their global warming potential over 100 years (GWP) characteristics, and clinical uses, many of which have evaded scrutiny from policy makers due to their medical necessity, is needed.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Agricultural Biosystems Engineering Group, Department of Plant Sciences, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands.
Managing dairy excreta as slurry can result in significant emissions of ammonia (NH) and greenhouse gases (GHGs) during storage and thereafter. Additionally, slurry often has an imbalanced nitrogen (N) to phosphorus (P) ratio for crop fertilization. While various treatments exist to address emissions and nutrient imbalances, each has trade-offs that can result in pollution swapping.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!