A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantum dipole interactions and transient hydrogen bond orientation order in cells, cellular membranes and myelin sheath: Implications for MRI signal relaxation, anisotropy, and T magnetic field dependence. | LitMetric

Purpose: Despite significant impact on the study of human brain, MRI lacks a theory of signal formation that integrates quantum interactions involving proton dipoles (a primary MRI signal source) with brain intricate cellular environment. The purpose of the present study is developing such a theory.

Methods: We introduce the Transient Hydrogen Bond (THB) model, where THB-mediated quantum dipole interactions between water and protons of hydrophilic heads of amphipathic biomolecules forming cells, cellular membranes and myelin sheath serve as a major source of MR signal relaxation.

Results: The THB theory predicts the existence of a hydrogen-bond-driven structural order of dipole-dipole connections within THBs as a primary factor for the anisotropy observed in MRI signal relaxation. We have also demonstrated that the conventional Lorentzian spectral density function decreases too fast at high frequencies to adequately capture the field dependence of brain MRI signal relaxation. To bridge this gap, we introduced a stretched spectral density function that surpasses the limitations of Lorentzian dispersion. In human brain, our findings reveal that at any time point only about 4% to 7% of water protons are engaged in quantum encounters within THBs. These ultra-short (2 to 3 ns), but frequent quantum spin exchanges lead to gradual recovery of magnetization toward thermodynamic equilibrium, that is, relaxation of MRI signal.

Conclusion: By incorporating quantum proton interactions involved in brain imaging, the THB approach introduces new insights on the complex relationship between brain tissue cellular structure and MRI measurements, thus offering a promising new tool for better understanding of brain microstructure in health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997466PMC
http://dx.doi.org/10.1002/mrm.29996DOI Listing

Publication Analysis

Top Keywords

mri signal
16
signal relaxation
12
quantum dipole
8
dipole interactions
8
transient hydrogen
8
hydrogen bond
8
cells cellular
8
cellular membranes
8
membranes myelin
8
myelin sheath
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!