Burst Image Restoration aims to reconstruct a high-quality image by efficiently combining complementary inter-frame information. However, it is quite challenging since individual burst images often have inter-frame misalignments that usually lead to ghosting and zipper artifacts. To mitigate this, we develop a novel approach for burst image processing named BIPNet that focuses solely on the information exchange between burst frames and filter-out the inherent degradations while preserving and enhancing the actual scene details. Our central idea is to generate a set of pseudo-burst features that combine complementary information from all the burst frames to exchange information seamlessly. However, due to inter-frame misalignment, the information cannot be effectively combined in pseudo-burst. Thus, we initially align the incoming burst features regarding the reference frame using the proposed edge-boosting feature alignment. Lastly, we progressively upscale the pseudo-burst features in multiple stages while adaptively combining the complementary information. Unlike the existing works, that usually deploy single-stage up-sampling with a late fusion scheme, we first deploy a pseudo-burst mechanism followed by the adaptive-progressive feature up-sampling. The proposed BIPNet significantly outperforms the existing methods on burst super-resolution, low-light image enhancement, low-light image super-resolution, and denoising tasks. The pre-trained models and source code are available at https://github.com/akshaydudhane16/BIPNet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2024.3356188 | DOI Listing |
Pflugers Arch
January 2025
Division of Neurophysiology, Department of Physiology, Hyogo Medical University, Hyogo, 663 8501, Japan.
The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
State Key Laboratory of Precision Measurements Technology and Instrument, Tianjin University, Tianjin 300072, China.
Piezoelectric micromachined ultrasonic transducers (PMUTs) show considerable promise for application in ultrasound imaging, but the limited bandwidth of the traditional PMUTs largely affects the imaging quality. This paper focuses on how to arrange cells with different frequencies to maximize the bandwidth and proposes a multi-frequency PMUT (MF-PMUT) linear array. Seven cells with gradually changing frequencies are arranged in a monotonic trend to form a unit, and 32 units are distributed across four lines, forming one element.
View Article and Find Full Text PDFGen Thorac Cardiovasc Surg Cases
January 2025
Department of Cardiovascular Surgery, Japan Organization of Occupational Health and Safety, Osaka Rosai Hospital, Sakai, Osaka, 591-8025, Japan.
Background: Epileptic seizures following adult cardiovascular surgery occur in 0.9-3% of patients, with the condition in 3-12% of these patients progressing to status epilepticus (SE). SE is a severe condition that significantly impacts prognosis and necessitates early diagnosis and treatment.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Early brain injury (EBI) after subarachnoid hemorrhage (SAH) is a clear correlation with poor prognosis. In the past 20 years, the research on EBI has increased rapidly. However, there is a lack of bibliometric analysis related to EBI.
View Article and Find Full Text PDFSci Rep
January 2025
Hatherly Laboratories, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK.
Beta-frequency oscillations (20-30 Hz) are prominent in both human and rodent electroencephalogram (EEG) recordings. Discrete epochs of beta (or Beta2) oscillations are prevalent in the hippocampus and other brain areas during exploration of novel environments. However, little is known about the spatial distribution and temporal relationships of beta oscillations across the cortex in response to novel contexts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!