Beta amyloid peptide Aβ 1-42 (Aβ42) has a unique dual role in the human organism, as both the peptide with an important physiological function and one of the most toxic biological compounds provoking Alzheimer's disease (AD). There are several known Aβ42 isoforms that we discuss here that are highly neurotoxic and lead to the early onset of AD. Aβ42 is an intrinsically disordered protein with no experimentally solved structure under physiological conditions. The objective of this research was to establish the appropriate molecular dynamics (MD) methodology and model a uniform set of structures for the Aβ42 isoforms that form the core of this study. For that purpose, force field selection and verification including convergence testing for MD simulations was made. Replica exchange MD and conventional MD modeling of several Aβ42 and Aβ16 isoforms that have neurotoxic and amyloidogenic effects impacting the severity of Alzheimer's disease were carried out with the optimal force field and solvent parameters. A standardized ensemble of structures for the Aβ42 and Aβ16 isoforms covering 30-50% of the conformational ensembles extracted from the free energy minima was calculated from MD trajectories. The resulting data set of modeled structures includes Aβ42 wild type, isoD7, pS8, D7H, and H6R-Aβ42 and Aβ16 wild type, isoD7, pS8, D7H, and H6R-Aβ16. The representative structures are given in the Supporting Information; they are open for public access. In the study, we also evaluated the differences between the structures of Aβ42 isoforms and speculate on their possible relevance to the known functions. Utilizing several representative structures for a single disordered protein for docking, with their subsequent averaging by conformations, would markedly increase the reliability of docking results.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.3c01624DOI Listing

Publication Analysis

Top Keywords

aβ42 isoforms
12
structures aβ42
12
beta amyloid
8
amyloid peptide
8
peptide aβ
8
aβ 1-42
8
molecular dynamics
8
aβ42
8
alzheimer's disease
8
disordered protein
8

Similar Publications

Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.

View Article and Find Full Text PDF

Branched-chain amino acids (BCAAs) are essential amino acids for humans and play an indispensable role in many physiological and pathological processes. Branched-chain amino acid aminotransferase (BCAT) is a key enzyme that catalyzes the metabolism of BCAAs. BCAT is upregulated in many cancers and implicated in the development and progress of some other diseases, such as metabolic and neurological diseases; and therefore, targeting BCAT might be a potential therapeutic approach for these diseases.

View Article and Find Full Text PDF

Background: Elevated BHB levels are hypothesized to influence hepatic antioxidant enzyme expression and activity, contributing to oxidative response. However, the impact of BHB between 0.8 and 1.

View Article and Find Full Text PDF

Structural insights into isoform-specific RAS-PI3Kα interactions and the role of RAS in PI3Kα activation.

Nat Commun

January 2025

NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Mutations in RAS and PI3Kα are major drivers of human cancer. Their interaction plays a crucial role in activating PI3Kα and amplifying the PI3K-AKT-mTOR pathway. Disrupting RAS-PI3Kα interaction enhances survival in lung and skin cancer models and reduces tumor growth and angiogenesis, although the structural details of this interaction remain unclear.

View Article and Find Full Text PDF

rRNA-derived fragments (rRFs) are a class of emerging post-transcriptional regulators of gene expression likely binding to the transcripts of target genes. However, the lack of knowledge about such targets hinders our understanding of rRF functions or binding mechanisms. The paucity of resources supporting the identification of the targets of rRFs creates a bottleneck in the fast-developing field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!