Myocardial fibrosis is a feature found in most cardiac diseases and a key element contributing to heart failure and its progression. It has therefore become a subject of particular interest in cardiac research. Mechanisms leading to pathological cardiac remodeling and heart failure are diverse, including effects on cardiac fibroblasts, the main players in cardiac extracellular matrix synthesis, but also on cardiomyocytes, immune cells, endothelial cells, and more recently, platelets. Although transforming growth factor-β (TGF-β) is a primary regulator of fibrosis development, the cellular and molecular mechanisms that trigger its activation after cardiac injury remain poorly understood. Different types of anti-TGF-β drugs have been tested for the treatment of cardiac fibrosis and have been associated with side effects. Therefore, a better understanding of these mechanisms is of great clinical relevance and could allow us to identify new therapeutic targets. Interestingly, it has been shown that platelets infiltrate the myocardium at an early stage after cardiac injury, producing large amounts of cytokines and growth factors. These molecules can directly or indirectly regulate cells involved in the fibrotic response, including cardiac fibroblasts and immune cells. In particular, platelets are known to be a major source of TGF-β1. In this review, we have provided an overview of the classical cellular effectors involved in the pathogenesis of cardiac fibrosis, focusing on the emergent role of platelets, while discussing opportunities for novel therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00559.2023 | DOI Listing |
Am J Hypertens
January 2025
Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University; Xuzhou 221004, China.
Background: Polo-like kinase 2 (PLK2) is associated with cardiac fibrosis in patients with atrial fibrillation. However, the role of PLK2 in sepsis-induced cardiac injury has not been fully elucidated. We hypothesize that PLK2 may participate in the progression of sepsis-induced cardiac injury.
View Article and Find Full Text PDFNat Commun
January 2025
Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
Liver fibrosis is a critical liver disease that can progress to more severe manifestations, such as cirrhosis, yet no effective targeted therapies are available. Here, we identify that ATF4, a master transcription factor in ER stress response, promotes liver fibrosis by facilitating a stress response-independent epigenetic program in hepatic stellate cells (HSCs). Unlike its canonical role in regulating UPR genes during ER stress, ATF4 activates epithelial-mesenchymal transition (EMT) gene transcription under fibrogenic conditions.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi'an, Shaanxi 710004, China. Electronic address:
Aims: Glucosamine, a widely used dietary supplement, has been linked to potential cardiovascular risks, including atrial fibrillation (AF). This study aimed to investigate the effects of long-term glucosamine supplementation on AF susceptibility and the underlying mechanisms.
Materials And Methods: C57BL/6 J mice were treated with low-dose (15 mg/kg/day) or high-dose (250 mg/kg/day) glucosamine via drinking water for 6 weeks.
Eur J Pharmacol
January 2025
School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China. Electronic address:
Diabetic cardiomyopathy, a heart disease resulting from diabetes mellitus, inflicts structural and functional damage to the heart. Recent studies have highlighted the potential role of luteolin, a flavonoid, in mitigating diabetic cardiovascular injuries. The Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is implicated in exacerbating diabetes- and obesity-related complications.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Division of Cardiology, Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48105, USA; Ann Arbor VA Healthcare System, 2215 Fuller Rd, Ann Arbor, MI 48105, USA. Electronic address:
Preclinical heart failure studies rely heavily on mouse models despite their higher metabolic and heart rates compared to humans. This study examines how mouse strain (C57BL/6J vs. C57BL/6N) and housing temperature (23°C vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!