Auditory perceptual evaluation is considered the gold standard for assessing voice quality, but its reliability is limited due to inter-rater variability and coarse rating scales. This study investigates a continuous, objective approach to evaluate hoarseness severity combining machine learning (ML) and sustained phonation. For this purpose, 635 acoustic recordings of the sustained vowel /a/ and subjective ratings based on the roughness, breathiness, and hoarseness scale were collected from 595 subjects. A total of 50 temporal, spectral, and cepstral features were extracted from each recording and used to identify suitable ML algorithms. Using variance and correlation analysis followed by backward elimination, a subset of relevant features was selected. Recordings were classified into two levels of hoarseness, H<2 and H≥2, yielding a continuous probability score ŷ∈[0,1]. An accuracy of 0.867 and a correlation of 0.805 between the model's predictions and subjective ratings was obtained using only five acoustic features and logistic regression (LR). Further examination of recordings pre- and post-treatment revealed high qualitative agreement with the change in subjectively determined hoarseness levels. Quantitatively, a moderate correlation of 0.567 was obtained. This quantitative approach to hoarseness severity estimation shows promising results and potential for improving the assessment of voice quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0024341 | DOI Listing |
Acad Radiol
January 2025
Department of Radiology and Intervention, Hospital Pakar Kanak-Kanak (UKM Specialist Children's Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia (Y.L., F.Y.L., J.N.C., H.A.H., H.A.M.); Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia (H.A.M.). Electronic address:
Rationale And Objectives: Extrathyroidal extension (ETE) and BRAF mutation in papillary thyroid cancer (PTC) increase mortality and recurrence risk. Preoperative identification presents considerable challenges. Although radiomics has emerged as a potential tool for identifying ETE and BRAF mutation, systematic evidence supporting its effectiveness remains insufficient.
View Article and Find Full Text PDFBr J Anaesth
January 2025
Faculty of Data Science, Musashino University, Tokyo, Japan. Electronic address:
J Pediatr (Rio J)
January 2025
Department of General Surgery and Neonatal Surgery, Liangjiang Wing, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China. Electronic address:
Objective: This study aimed to develop a predictive model using a random forest algorithm to determine the likelihood of postoperative adhesive small bowel obstruction (ASBO) in infants under 3 months with intestinal malrotation.
Methods: A machine learning model was used to predict postoperative adhesive small bowel obstruction using comprehensive clinical data extracted from 107 patients with a follow-up of at least 24 months. The Boruta algorithm was used for selecting clinical features, and nested cross-validation tuned and selected hyper-parameters for the random forest model.
Environ Int
January 2025
School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China. Electronic address:
Ozone (O) is a significant contributor to air pollution and the main constituent ofphotochemical smog that plagues China. Nitrogen dioxide (NO) is a significant air pollutant and a critical trace gas in the Earth's atmosphere. The presence of O and NO has detrimental effects on human health, the ecosystem, and agricultural production.
View Article and Find Full Text PDFComput Biol Chem
January 2025
College of Artificial Intelligence, Tianjin University of Science and Technology, No. 9, 13th Street, Tianjin Economic-Technological Development Area, Tianjin, 300457, China. Electronic address:
The enzyme turnover number (k) is crucial for understanding enzyme kinetics and optimizing biotechnological processes. However, experimentally measured k values are limited due to the high cost and labor intensity of wet-lab measurements, necessitating robust computational methods. To address this issue, we propose PreTKcat, a framework that integrates pre-trained representation learning and machine learning to predict k values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!