Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Most hexagonal boron nitride (hBN) single-photon emitters (SPEs) studied to date suffer from variable emission energy and unpredictable polarization, two crucial obstacles to their application in quantum technologies. Here, we report an SPE in hBN with an energy of 2.2444 ± 0.0013 eV created via carbon implantation that exhibits a small inhomogeneity of the emission energy. Polarization-resolved measurements reveal aligned absorption and emission dipole orientations with a 3-fold distribution, which follows the crystal symmetry. Photoluminescence excitation (PLE) spectroscopy results show the predictability of polarization is associated with a reproducible PLE band, in contrast with the non-reproducible bands found in previous hBN SPE species. Photon correlation measurements are consistent with a three-level model with weak coupling to a shelving state. Our ab initio excited-state calculations shed light on the atomic origin of this SPE defect, which consists of a pair of substitutional carbon atoms located at boron and nitrogen sites separated by a hexagonal unit cell.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835729 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.3c03628 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!