Background: Early on in the development of diabetes, skeletal muscles can exhibit microarchitectural changes that can be detected using texture analysis (TA) based on volume transfer constant (K) maps. Nevertheless, there have been few studies and thus we evaluated microvascular permeability and the TA of the bone marrow in diabetics with critical limb ischemia (CLI).
Methods: Eighteen male rabbits were randomly assigned equally into an operation group with hindlimb ischemia and diabetes, a sham-operated group with diabetes only, and a control group. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) was performed on all rabbits at predetermined intervals (1, 5, 10, 15, 20, and 25 days post-surgery). The pharmacokinetic model was used to generate the permeability parameters, while the textural parameters were derived from the K map. Data analysis methods included the independent sample t-test, Mann-Whitney U test, repeated-measures analysis of variance, and Pearson correlation tests.
Results: The K values reached a minimum on day 1 after ischemia induction, then gradually recovered, but remained lower than those of the sham-operated group. The volume fraction only showed a significant difference between the operation group and the sham-operated group on day 5 post-surgery, but not in the extravascular extracellular space volume fraction at all time points. A significantly reduced K on day 1, a decreased number of bone trabeculae (Tb.N), and the area of bone trabeculae (Tb.Ar), and an increased microvessel density on day 25 in the operation group compared with the sham-operated group were observed. At each time point, there was a discernible difference between the two groups in the mean value, mean of positive pixels, and sum.
Conclusions: The early stages of diabetic bone marrow with CLI can be evaluated by DCE-MRI for microvascular permeability. Texture analysis based on DCE-MRI could act as an imaging discriminator and new radiological analysis tool for critical limb ischemia in diabetes mellitus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11060156 | PMC |
http://dx.doi.org/10.1111/jdi.14145 | DOI Listing |
Investig Clin Urol
January 2025
National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea.
Purpose: To investigate the therapeutic potential of eliminating insulin-like growth factor-binding protein 5 (IGFBP5) expression in improving erectile function in mice with cavernous nerve injury (CNI)-induced erectile dysfunction (ED).
Materials And Methods: Eight-week-old male C57BL/6 mice were divided into four groups: a sham-operated group and three CNI-induced ED groups. The CNI-induced ED groups were treated with intracavernous injections 3 days before the CNI procedure.
Pharmaceuticals (Basel)
December 2024
Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan.
Background: Morphine analgesic tolerance (MAT) limits the clinical application of morphine in the management of chronic pain. IIK7 is a melatonin type 2 (MT2) receptor agonist known to have antioxidant properties. Oxidative stress is recognized as a critical factor in MAT.
View Article and Find Full Text PDFBiomedicines
December 2024
Institute of Pathological Physiology, Faculty of Medicine, University of Belgrade, Dr Subotića 1, 11000 Belgrade, Serbia.
Background/objectives: Chronic kidney disease (CKD) is a progressive pathological condition which results in the severe fibrosis of the kidneys. However, the mechanisms of CKD progression and fibrogenesis remain unclear. We wanted to examine the effects that apocynin and hyperbaric oxygen therapy (HBOT) have on renal function and structure in animals with CKD induced through 5/6 nephrectomy (5/6 Nx-L).
View Article and Find Full Text PDFOpen Life Sci
December 2024
Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
Rev Int Androl
December 2024
Department of Sports Science, College of Education, Zhejiang University, 310058 Hangzhou, Zhejiang, China.
Background: Testicular torsion-detorsion damage is a common ischemia-reperfusion injury brought on by an excess of reactive oxygen species. Reactive oxygen species may affect cellular differentiation by regulating gene expression. The gene expression in the testis is essential for spermatogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!