AI Article Synopsis

  • Planar microelectrode arrays (MEAs) struggle with low spatial resolution and signal-to-noise ratio, limiting their effectiveness in understanding neuronal functions.
  • A novel 3D printing method combined with thin film technology creates customizable MEAs that are physically robust and capable of recording neural activity across different applications.
  • These advanced 3D MEAs facilitate research in both normal and pathological conditions, enhancing capabilities for drug screening and neuromodulation studies.

Article Abstract

Planar microelectrode arrays (MEAs) for - in vitro or in vivo - neuronal signal recordings lack the spatial resolution and sufficient signal-to-noise ratio (SNR) required for a detailed understanding of neural network function and synaptic plasticity. To overcome these limitations, a highly customizable three-dimensional (3D) printing process is used in combination with thin film technology and a self-aligned template-assisted electrochemical deposition process to fabricate 3D-printed-based MEAs on stiff or flexible substrates. Devices with design flexibility and physical robustness are shown for recording neural activity in different in vitro and in vivo applications, achieving high-aspect ratio 3D microelectrodes of up to 33:1. Here, MEAs successfully record neural activity in 3D neuronal cultures, retinal explants, and the cortex of living mice, thereby demonstrating the versatility of the 3D MEA while maintaining high-quality neural recordings. Customizable 3D MEAs provide unique opportunities to study neural activity under regular or various pathological conditions, both in vitro and in vivo, and contribute to the development of drug screening and neuromodulation systems that can accurately monitor the activity of large neural networks over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987114PMC
http://dx.doi.org/10.1002/advs.202305944DOI Listing

Publication Analysis

Top Keywords

vitro vivo
16
neural activity
12
highly customizable
8
microelectrode arrays
8
vivo neuronal
8
neural
6
customizable microelectrode
4
vitro
4
arrays vitro
4
vivo
4

Similar Publications

Diabetic cardiomyopathy (DCM) is a major complication of type 2 diabetes mellitus (T2DM), but its effective prevention and treatment are still limited. We investigated the effects of GYY4137, a slow-releasing hydrogen sulfide donor, and its downstream mediator forkhead box protein O1 (FOXO1) on T2DM-associated DCM. , T2DM mice were induced by a high-fat diet coupled with streptozotocin injection.

View Article and Find Full Text PDF

Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by , and . The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives.

View Article and Find Full Text PDF

Optimized BCMA/CS1 bispecific TRuC-T cells secreting IL-7 and CCL21 robustly control multiple myeloma.

Front Immunol

December 2024

Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.

Introduction: Challenges remain in reducing antigen escape and tumor recurrence while CAR-T cell therapy has substantially improved outcomes in the treatment of multiple myeloma. T cell receptor fusion construct (TRuC)-T cells, which utilize intact T cell receptor (TCR)-CD3 complex to eliminate tumor cells in a non-major histocompatibility complex (MHC)-restricted manner, represent a promising strategy. Moreover, interleukin-7 (IL-7) is known to enhance the proliferation and survival of T cells.

View Article and Find Full Text PDF

Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!