Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Facile synthesis of porous carbon with high yield and high specific surface area (SSA) from low-cost molecular precursors offers promising opportunities for their industrial applications. However, conventional activation methods using potassium and sodium hydroxides or carbonates suffer from low yields (<20%) and poor control over porosity and composition especially when high SSAs are targeted (>2000 m g) because nanopores are typically created by etching. Herein, a non-etching activation strategy is demonstrated using cesium salts of low-cost carboxylic acids as the sole precursor in producing porous carbons with yields of up to 25% and SSAs reaching 3008 m g. The pore size and oxygen content can be adjusted by tuning the synthesis temperature or changing the molecular precursor. Mechanistic investigation unravels the non-classical role of cesium as an activating agent. The cesium compounds that form in situ, including carbonates, oxides, and metallic cesium, have extremely low work function enabling electron injection into organic/carbonaceous framework, promoting condensation, and intercalation of cesium ions into graphitic stacks forming slit pores. The resulting porous carbons deliver a high capacity of 252 mAh g (567 F g) and durability of 100 000 cycles as cathodes of Zn-ion capacitors, showing their potential for electrochemical energy storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202311655 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!