Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is widely used in untargeted metabolomics, but large-scale and high-accuracy metabolite annotation remains a challenge due to the complex nature of biological samples. Recently introduced electron impact excitation of ions from organics (EIEIO) fragmentation can generate information-rich fragment ions. However, effective utilization of EIEIO tandem mass spectrometry (MS/MS) is hindered by the lack of reference spectral databases. Molecular networking (MN) shows great promise in large-scale metabolome annotation, but enhancing the correlation between spectral and structural similarity is essential to fully exploring the benefits of MN annotation. In this study, a novel approach was proposed to enhance metabolite annotation in untargeted metabolomics using EIEIO and MN. MS/MS spectra were acquired in EIEIO and collision-induced dissociation (CID) modes for over 400 reference metabolites. The study revealed a stronger correlation between the EIEIO spectra and metabolite structure. Moreover, the EIEIO spectral network outperformed the CID spectral network in capturing structural analogues. The annotation performance of the structural similarity network for untargeted LC-MS/MS was evaluated. For the spiked NIST SRM 1950 human plasma, the annotation coverage and accuracy were 72.94 and 74.19%, respectively. A total of 2337 metabolite features were successfully annotated in NIST SRM 1950 human plasma, which was twice that of LC-CID MS/MS. Finally, the developed method was applied to investigate prostate cancer. A total of 87 significantly differential metabolites were annotated. This study combining EIEIO and MN makes a valuable contribution to improving metabolome annotation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c03443 | DOI Listing |
Sci Rep
December 2024
Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain.
Cannabis use disorder affects up to 42% of individuals with schizophrenia, correlating with earlier onset, increased positive symptoms, and more frequent hospitalizations. This study employed an untargeted lipidomics approach to identify biomarkers in plasma samples from subjects with schizophrenia, cannabis use disorder, or both (dual diagnosis), aiming to elucidate the metabolic underpinnings of cannabis abuse and schizophrenia development. The use of liquid chromatography-high resolution mass spectrometry enabled the annotation of 119 metabolites, with the highest identification confidence level achieved for 16 compounds.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
Background: Yellow nutsedge (Cyperus esculentus, known as 'YouShaDou' in China, YSD) and purple nutsedge (Cyperus rotundus, known as 'XiangFuZi' in China, XFZ), closely related Cyperaceae species, exhibit significant differences in triacylglycerol (TAG) accumulation within their tubers, a key factor in carbon flux repartitioning that highly impact the total lipid, carbohydrate and protein metabolisms. Previous studies have attempted to elucidate the carbon anabolic discrepancies between these two species, however, a lack of comprehensive genome-wide annotation has hindered a detailed understanding of the underlying molecular mechanisms.
Results: This study utilizes transcriptomic analyses, supported by a comprehensive YSD reference genome, and metabolomic profiling to uncover the mechanisms underlying the major carbon perturbations between the developing tubers of YSD and XFZ germplasms harvested in Yunnan province, China, where the plant biodiveristy is renowned worldwide and may contain more genetic variations relative to their counterparts in other places.
Food Chem
December 2024
Instituto de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20, salida 13), Logroño E-26007, La Rioja, Spain. Electronic address:
The epidemiological assessment of wine consumption usually has been obtained using self-reporting questionnaires. In this study, two metabolomic approaches, targeted and untargeted, were applied to 24-h urine samples from a cohort of La Rioja (Spain) (aged 52-78), comparing moderate and daily wine consumers (20 males and 13 females) without diet intervention, versus non-consumers (8 males and 35 females). Results showed that the non-targeted metabolomics approach has allowed for the annotation of sixteen compounds in 24-h urine samples from regular wine-consumers that were not detected in the urine of non-wine consumers.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (<4 min/sample) which takes advantage of a serial injection format of 13 samples within a single analytical run.
View Article and Find Full Text PDFMetabolites
December 2024
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
Volatile compounds have a deep influence on the quality and application of the medicinal herb ; however, little is known about the effect of UV-B radiation on volatile metabolites. We herein investigated the effects of UV-B exposure on the volatile compounds and transcriptome of to assess the potential for improving its quality and medicinal characteristics. Out of 733 volatiles obtained, a total of 133 differentially expressed metabolites (DEMs) were identified by metabolome analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!