Exploring economical, efficient, and stable electrocatalysts for the seawater hydrogen evolution reaction (HER) is highly desirable but is challenging. In this study, a Mo cation doped NiSe/MoSe heterostructural electrocatalyst, Mo-NiSe/MoSe, was successfully prepared by simultaneously doping Mo cations into the NiSe lattice (Mo-NiSe) and growing atomic MoSe nanosheets epitaxially at the edge of the Mo-NiSe. Such an Mo-NiSe/MoSe catalyst requires only 110 mV to drive current densities of 10 mA cm in alkaline simulated seawater, and shows almost no obvious degradation after 80 h at 20 mA cm. The experimental results, combined with the density functional theory calculations, reveal that the Mo-NiSe/MoSe heterostructure will generate an interfacial electric field to facilitate the electron transfer, thus reducing the water dissociation barrier. Significantly, the heteroatomic Mo-doping in the NiSe can regulate the local electronic configuration of the Mo-NiSe/MoSe heterostructure catalyst by altering the coordination environment and orbital hybridization, thereby weakening the bonding interaction between the Cl and Se/Mo. This synergistic effect for the Mo-NiSe/MoSe heterostructure will simultaneously enhance the catalytic activity and durability, without poisoning or corrosion of the chloride ions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793640PMC
http://dx.doi.org/10.1039/d3sc05220fDOI Listing

Publication Analysis

Top Keywords

mo-nise/mose heterostructure
12
simulated seawater
8
seawater hydrogen
8
hydrogen evolution
8
heterostructure will
8
mo-nise/mose
5
mo-doping heterojunction
4
heterojunction interfacial
4
interfacial engineering
4
engineering efficient
4

Similar Publications

In this study, we explore the photovoltaic performance of an innovative high efficiency heterostructure utilizing the quaternary semiconductor CuFeSnSe (CFTSe). This material features a kesterite symmetrical structure and is distinguished by its non-toxic nature and abundant presence in the earth's crust. Utilizing the SCAPS simulator, we explore various electrical specifications such as short circuit current (J), open circuit voltage (V), the fill factor (FF), and power conversion efficiency (PCE) were explored at a large range of thicknesses, and the acceptor carrier concentration doping (N).

View Article and Find Full Text PDF
Article Synopsis
  • Excitons, which are pairs of electrons and holes held together by Coulomb forces, can form a superfluid at low temperatures due to their bosonic properties.
  • The research involves directly imaging this exciton superfluid in a specific material setup (MoSe-WSe heterostructure), demonstrating a significant level of order across the sample.
  • The study also details how variations in exciton density and temperature help construct a phase diagram, revealing that the superfluid state can persist up to 15 K, aligning well with theoretical expectations and paving the way for advancements in quantum devices and superfluid research.
View Article and Find Full Text PDF

Although MoSe-based photodetectors have achieved excellent performance, the ultrafast photoresponse has limited their application as an optoelectronic synapse. In this paper, the enhancement of the rhodamine 6G molecule on the memory time of MoSe is reported. It is found that the memory time of monolayer MoSe can be obviously enhanced after assembly with rhodamine 6G exhibiting synaptic characteristics in comparison to pristine MoSe.

View Article and Find Full Text PDF

Intrinsic Localized Excitons in MoSe/CrSBr Heterostructure.

Adv Mater

December 2024

State Key Laboratory for Artificial Microstructure & Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China.

Despite extensive studies on magnetic proximity effects, the fundamental excitonic properties of the 2D semiconductor-magnet heterostructures remain elusive. Here, the presence of localized excitons in MoSe/CrSBr heterostructures is unveiled, represented by a new photoluminescence emission feature, X. Our findings reveal that X originates from excitons confined by intrinsic defects in the CrSBr layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!