Electrochemiluminescence (ECL) is a highly sensitive mode of detection utilised in commercialised bead-based immunoassays. Recently, the introduction of a freely diffusing water-soluble Ir(iii) complex was demonstrated to enhance the ECL emission of [Ru(bpy)] labels anchored to microbeads, but a comprehensive investigation of the proposed 'redox-mediated' mechanism was not carried out. In this work, we select three different water-soluble Ir(iii) complexes by virtue of their photophysical and electrochemical properties in comparison with those of the [Ru(bpy)] luminophore and the TPrA co-reactant. A systematic investigation of the influence of each Ir(iii) complex on the emission of the Ru(ii) labels on single beads by ECL microscopy revealed that the heterogeneous ECL can be finely tuned and either enhanced up to 107% or lowered by 75%. The variation of the [Ru(bpy)] ECL emission was correlated to the properties of each Ir(iii)-based mediator, which enabled us to decipher the mechanism of interaction and define guidelines for the future design of novel Ir(iii) complexes to further enhance the ECL emission of bead-based immunoassays. Ultimately, we showcase the potential of this technology for practical sample analysis in commercial instruments by assessing the enhancement of the collective ECL intensity from a bead-based system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793598PMC
http://dx.doi.org/10.1039/d3sc06357gDOI Listing

Publication Analysis

Top Keywords

ecl emission
12
bead-based immunoassays
8
water-soluble iriii
8
iriii complex
8
enhance ecl
8
iriii complexes
8
ecl
7
redox-mediated electrochemiluminescence
4
electrochemiluminescence enhancement
4
bead-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!