Anion binding and ion pairing of dipyrrolyldiketone Pt complexes as anion-responsive π-electronic molecules resulted in photophysical modulations, as observed in solid-state phosphorescence properties. Modifications to arylpyridine ligands in the Pt complexes significantly impacted the assembling behaviour and photophysical properties of anion-free and anion-binding (ion-pairing) forms. The Pt complexes, in the presence of guest anions and their countercations, formed various anion-binding modes and ion-pairing assembled structures depending on constituents and forms (solutions and crystals). The Pt complexes emitted strong phosphorescence in deoxygenated solutions but showed extremely weak phosphorescence in the solid state owing to self-association. In contrast, the solid-state ion-pairing assemblies with tetraalkylammonium cations exhibited enhanced phosphorescence owing to the formation of hydrogen-bonding 1D-chain Pt complexes dispersed by stacking with aliphatic cations. Theoretical studies revealed that the enhanced phosphorescence in the solid-state ion-pairing assembly was attributed to preventing the delocalisation of the electron wavefunction over Pt complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793596PMC
http://dx.doi.org/10.1039/d3sc04564aDOI Listing

Publication Analysis

Top Keywords

solid-state phosphorescence
8
ion-pairing assembly
8
solid-state ion-pairing
8
enhanced phosphorescence
8
phosphorescence
6
complexes
6
ion-pairing
5
enhanced solid-state
4
phosphorescence organoplatinum
4
organoplatinum π-systems
4

Similar Publications

The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.

View Article and Find Full Text PDF

Phosphorescent Sensor Based on Iridium(III) Complex with Aggregation-Induced Emission Activity for Facile Detection of Volatile Acids.

Molecules

December 2024

Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.

Phosphorescent sensors are essential for rapid visual sensing of volatile acids, due to their profound impact on ecosystems and human health. However, solid phosphorescent materials for acid-base stimulus response are still rare, and it is important to achieve real-time monitoring of volatile acids. In order to obtain an efficient and rapid response to volatile acid stimulation, N-H and -NH substituents are introduced into an auxiliary ligand to synthesize a new cationic Ir(III) complex ().

View Article and Find Full Text PDF

Aurophilic interaction-based aggregation of gem-digold(I) aryls towards high spin-orbit coupling and strong phosphorescence.

Nat Commun

January 2025

Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.

Luminescent gold(I) compounds have attracted intensive attention due to anticipated strong spin-orbit coupling (SOC) resulting from heavy atom effect of gold atoms. However, some mononuclear gold(I) compounds are barely satisfactory. Here, we unveil that low participation of gold in transition-related orbitals, caused by 6s-π symmetry mismatch, is the cause of low SOCs in monogold(I) compounds.

View Article and Find Full Text PDF

Recently, biomass-derived carbon dots (CDs) have attracted considerable attention in high-technology fields due to their prominent merits, including brilliant luminescence, superior biocompatibility, and low toxicity. However, most of the biomass-derived CDs only show bright fluorescence in diluted solution because of aggregation-induced quenching effect, hence cannot exhibit solid-state long-lived room-temperature phosphorescence (RTP) in ambient conditions. Herein, matrix-free solid-state RTP with an average lifetime of 0.

View Article and Find Full Text PDF

Heterochiral Self-Discrimination Driven Dimerization of Polynuclear Gold(I)-Sulfido Complexes with Enhanced Phosphorescence.

Angew Chem Int Ed Engl

December 2024

Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China.

Article Synopsis
  • Researchers have created decanuclear chiral gold(I) sulfido clusters (S-Au and R-Au) using specialized SDP ligands.
  • Mixing these chiral clusters in a 1:1 ratio yields an achiral heterodimer icosanuclear meso-cluster (meso-Au), which exhibits intense near-infrared luminescence with a peak at around 750 nm.
  • The study highlights the significant increase in photoluminescence quantum yield for meso-Au (25%) compared to the chiral clusters (8%), and shows that the clustering process is influenced by solvent polarity and diphosphine ligand configuration, aiding the understanding of self-sorting in chiral assemblies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!