Background: possesses a cobalamin-dependent methionine synthase (MS). MS is putatively encoded by the PF3D7_1233700 gene, which is orthologous and syntenic in . However, its vulnerability as an antimalarial target has not been assessed.

Methods: We edited the PF3D7_1233700 and PF3D7_0417200 (dihydrofolate reductase-thymidylate synthase, DHFR-TS) genes and obtained transgenic parasites expressing epitope-tagged target proteins under the control of the ribozyme. Conditional loss-of-function mutants were obtained by treating transgenic parasites with glucosamine.

Results: DHFR-TS, but not MS mutants showed a significant proliferation defect over 96 h, suggesting that MS is not a vulnerable antimalarial target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795524PMC
http://dx.doi.org/10.7717/peerj.16595DOI Listing

Publication Analysis

Top Keywords

antimalarial target
12
methionine synthase
8
transgenic parasites
8
target vulnerability
4
vulnerability putative
4
putative methionine
4
synthase background
4
background possesses
4
possesses cobalamin-dependent
4
cobalamin-dependent methionine
4

Similar Publications

Systemic Lupus Erythematous: Gene Polymorphisms, Epigenetics, Environmental, Hormonal and Nutritional Factors in the Consideration of Personalized Therapy.

Arch Intern Med Res

December 2024

Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA.

Systemic Lupus Erythematosus (SLE) is a chronic illness that can affect many tissues through the production of autoantibodies. A definite etiology has not been conclusively established, but current research points to the influences which include genetic, hormonal and environmental factors. SLE is difficult to treat due to its multifactorial pathogenesis and heterogeneity in clinical manifestations.

View Article and Find Full Text PDF

Manzamine A, a natural compound derived from various sponge genera, features a β-carboline structure and exhibits a range of biological activities, including anti-inflammatory and antimalarial effects. Its potential as an anticancer agent has been explored in several tumor models, both in vitro and in vivo, showing effects through mechanisms such as cytotoxicity, regulation of the cell cycle, inhibition of cell migration, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis through multi-target interactions of E2F transcriptional factors, ribosomal S6 kinases, androgen receptor (AR), SIX1, GSK-3β, V-ATPase, and p53/p21/p27 cascades. This systematic review evaluates existing literature on the potential application of this marine alkaloid as a novel cancer therapy, highlighting its promising ability to inhibit cancer cell growth while causing minimal side effects.

View Article and Find Full Text PDF

Gedunin Mitigates -Induced Skin Inflammation by Inhibiting the NF-κB Pathway.

Pharmaceuticals (Basel)

January 2025

Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.

: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.

View Article and Find Full Text PDF

Background: Congenital malaria remains a significant public health challenge in Nigeria, particularly in regions with high malaria endemicity. The increased vertical transmission of malaria is partly associated with the high susceptibility of women to malaria during pregnancy. This systematic review aimed to assess the prevalence, characteristics, and treatment outcomes of congenital malaria in Nigeria.

View Article and Find Full Text PDF

Background: The Plasmodium proteasome emerges as a promising target for anti-malarial drug development due to its potential activity against multiple life cycle stages.

Methods: In this investigation, a comparative analysis was conducted on the structural features of the β5 subunit in the 20S proteasomes of both Plasmodium and humans.

Results: The findings underscore the structural diversity inherent in both proteasomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!