Pure and Ni-Fe-codoped ZnNiFeO ( = 0.01, 0.02, 0.03, and 0.04) nanoparticles were effectively synthesized using a sol-gel autocombustion procedure. The structural, optical, morphological, and magnetic properties were determined by using X-ray diffraction (XRD), ultraviolet-visible (UV-vis), scanning electron microscopy, and vibrating sample magnetometer techniques. The XRD confirmed the purity of the hexagonal wurtzite crystal structure. XRD analysis further indicated that Fe and Ni successfully substituted the lattice site of Zn and generated a single-phase ZnNiFeO magnetic oxide. In addition, a significant morphological change was observed with an increase in the dopant concentration by using high-resolution scanning electron microscopy. The UV-vis spectroscopy analysis indicated the redshift in the optical band gap with increasing dopant concentration signifying a progressive decrease in the optical band gap. The vibrating sample magnetometer analysis revealed that the doped samples exhibited ferromagnetic properties at room temperature with an increase in the dopant concentration. Dopant concentration was confirmed by using energy-dispersive X-ray spectroscopy. The current results provide a vital method to improve the magnetic properties of ZnO nanoparticles, which may get significant attention from researchers in the field of magnetic semiconductors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10796112 | PMC |
http://dx.doi.org/10.1021/acsomega.3c01727 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Electrical Engineering, Kookmin University, Seoul 02707, Republic of Korea.
In this study, we analyze the characteristics of fast transient drain current () in IGZO-based field-effect transistors (FETs) with different composition ratios (device O: ratio of 1:1:1 for In, Ga, Zn, device G: ratio of 0.307:0.39:0.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Physics and Electronics, Shandong Normal University, 250358 Jinan, China.
Fluorinated graphdiyne (F-GDY) materials exhibit exceptional performance in various applications, such as luminescent devices, electron transport, and energy conversion. Although F-GDY has been successfully synthesized, there is a lack of comprehensive identification of fluorinated configurations, either by theory or experiment. In this work, we investigated seven representative F-GDY configurations with low dopant concentrations and simulated their carbon and fluorine 1s X-ray photoelectron spectroscopy (XPS) and carbon 1s near-edge X-ray absorption fine-structure (NEXAFS) spectra.
View Article and Find Full Text PDFMicroscopy (Oxf)
January 2025
Department of Materials Physics, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
The distribution of dopants in host crystals significantly influences the chemical and electronic properties of materials. Therefore, determining this distribution is crucial for optimizing material performance. The previously developed statistical ALCHEMI (St-ALCHEMI), an extension of the atom-location by channeling-enhanced microanalysis (ALCHEMI) technique, utilizes variations in electron channeling based on the beam direction relative to the crystal orientation.
View Article and Find Full Text PDFBone defects resulting from trauma or diseases that lead to bone loss have created a growing need for innovative materials suitable for treating bone-related conditions. The purpose of this study is, therefore, to synthesize and analyse the synergistic effects of cerium (Ce) and cerium-silver (Ce-Ag) doping of borosilicate bioactive glass (BBG) on the bioactivity, antibacterial properties, and biocompatibility for potential applications in bone tissue engineering. This study utilized a sol-gel Stöber method to synthesize doped BBGs based on S49B4.
View Article and Find Full Text PDFMolecules
December 2024
College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia.
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties. However, the current use of ZnO NPs is hindered by their potential cytotoxicity concerns, which are likely attributed to the generation of reactive oxygen species (ROS) and the dissolution of particles to ionic zinc. To reduce the cytotoxicity of ZnO NPs, transitional metals are introduced into ZnO lattices to modulate the ROS production and NP dissolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!