The main protease (M) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent M inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent M inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent M inhibitors with desirable properties have been developed based on available crystal structures of M. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent M inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent M inhibitors are also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792984 | PMC |
http://dx.doi.org/10.1016/j.apsb.2023.08.004 | DOI Listing |
Leuk Lymphoma
January 2025
Lymphoma Service - The Alfred Hospital, Melbourne, Victoria, Australia.
Prognostic assessment in chronic lymphocytic leukemia (CLL) is essential for delivery of timely, personalized therapy. status, karyotype, IGHV mutational status, minimal residual disease (MRD), gene mutations and markers of cell proliferation were important prognostic tools in the era of chemo-immunotherapy (CIT). With BCL2 inhibitors (BCL2i), outcome is still impacted by IGHV status, status, complex karyotype, and achievement of undetectable MRD.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China. Electronic address:
This study aimed to identify novel α-amylase inhibitory peptides from Russian sea cucumbers and elucidate their inhibitory mechanisms. Among the 52 identified sea cucumber peptide (SCP), two peptides with potential α-amylase inhibitory activity, FPSPPLVA (SCP1) and GPPMPPPPLP (SCP2), were selected from the sequences researched. The results showed that both SCP1 and SCP2 exhibited α-amylase inhibitory activity with IC of 0.
View Article and Find Full Text PDFTalanta
December 2024
Department of Pathology, College of Medicine, King Khalid University, Asir, 61421, Saudi Arabia; Forensic Medicine and Clinical Toxicology Department, Mansoura University, Egypt. Electronic address:
Complexing medications with cyclodextrins can enhance their solubility and stability. In this study, we investigated the host-guest complexation between Tetrahydrocurcumin (THC) and Hydroxypropyl-β-Cyclodextrin (HP-β-CD) using density functional theory (DFT) at the B3LYP-D3/TPZ level of theory in two possible orientations. To determine the reactive sites in both complexes for electrophilic and nucleophilic attacks, we calculated and interpreted the binding energy, HOMO and LUMO orbitals, global chemical reactivity descriptors, natural bond orbital (NBO) analysis, and Fukui indices.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Columbia University, New York, NY, USA.
Variants of SARS-CoV-2 have continued to emerge across the world and cause hundreds of deaths each week. Due to the limited efficacy of vaccines against SARS-CoV-2 and resistance to current therapies, additional anti-viral therapeutics with pan-coronavirus activity are of high interest. Here, we screen 2.
View Article and Find Full Text PDFNat Commun
January 2025
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
The smoke-derived butenolides, karrikins (KARs), regulate many aspects of plant growth and development. However, KARs and a plant hormone, strigolactones (SLs), have high resemblance in signal perception and transduction, making it hard to delineate KARs response due to the shortage of chemical-genetic tools. Here, we identify a triazole urea KK181N1 as an inhibitor of the KARs receptor KAI2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!