Drug resistance remains a challenge in ovarian cancer. In addition to aberrant activation of relevant signaling pathways, the adaptive stress response is emerging as a new spotlight of drug resistance in cancer cells. Stress granules (SGs) are one of the most important features of the adaptive stress response, and there is increasing evidence that SGs promote drug resistance in cancer cells. In the present study, we compared two types of ovarian cancer cells, A2780 and SKOV3, using the dual PI3K/mTOR inhibitor, PKI-402. We found that SGs were formed and SGs could intercept the signaling factor ATF5 and regulate the mitochondrial unfolded protein response (UPR) in A2780 cells. Therefore, exploring the network formed between SGs and membrane-bound organelles, such as mitochondria, which may provide a new insight into the mechanisms of antitumor drug functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795350PMC
http://dx.doi.org/10.1186/s12935-024-03210-xDOI Listing

Publication Analysis

Top Keywords

drug resistance
12
cancer cells
12
stress granules
8
dual pi3k/mtor
8
pi3k/mtor inhibitor
8
mitochondrial unfolded
8
unfolded protein
8
protein response
8
ovarian cancer
8
adaptive stress
8

Similar Publications

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

Many atopic dermatitis (AD) patients have suboptimal responses to Dupilumab therapy. This study identified key genes linked to this resistance using multi-omics approaches to benefit more patients. We selected a prospective cohort of 54 CE treated with Dupilumab from the GEO database.

View Article and Find Full Text PDF

CDK1 inhibitor RO-3306 enhances BTKi potency in diffuse large B-cell lymphoma by suppressing JAK2/STAT3 signaling.

Int J Biol Macromol

January 2025

Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China. Electronic address:

Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma in adults, which characterized by a high degree of heterogeneity in terms of clinical presentation, molecular phenotype, and genetic features. However, approximately 30 %-40 % of patients are refractory to standard chemotherapy, and their prognosis is poor. The emergence of small-molecule inhibitors, such as Bruton's tyrosine kinase inhibitors (BTKi), has greatly improved the treatment of DLBCL; however, drug resistance associated with small-molecule inhibitors has greatly limited their clinical application.

View Article and Find Full Text PDF

Unregulated pig farming practices expose pigs to fecal sewage and antibiotic stress, which are common health risk factors. Thus, its effects on the animals' intestinal microflora were investigated herein. In total, 2,315,563 high-quality sequences were obtained via amplitude sequencing and, after OUT clustering, the fecal sewage group was identified to have the highest number and the antibiotic exposure group the lowest.

View Article and Find Full Text PDF

Single nucleotide variations (SNVs) and polymorphisms (SNPs) are characteristic biomarkers in various biological contexts, including pathogen drug resistances and human diseases. Tools that lower the implementation barrier of molecular SNV detection methods would provide greater leverage of the expanding SNP/SNV database. The oligonucleotide ligation assay (OLA) is a highly specific means for detection of known SNVs and is especially powerful when coupled with polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!