Fabry disease (FD) is a rare, X-linked lysosomal storage disorder affecting both males and females caused by genetic abnormalities in the gene encoding the enzyme α-galactosidase A. FD-affected patients represent a highly variable clinical course with first symptoms already appearing in young age. The disease causes a progressive multiple organ dysfunction affecting mostly the heart, kidneys and nervous system, eventually leading to premature death. Disease-specific management of FD includes enzyme replacement therapy with agalsidase α and β or pharmacological oral chaperone migalastat. Migalastat is a low-molecular-mass iminosugar, that reversibly binds to active site of amenable enzyme variants, stabilizing their molecular structure and improving trafficking to the lysosome. Migalastat was approved in the EU in 2016 and is an effective therapy in the estimated 35-50% of all patients with FD with amenable GLA gene variants. This position statement is the first comprehensive review in Central and Eastern Europe of the current role of migalastat in the treatment of FD. The statement provides an overview of the pharmacology of migalastat and summarizes the current evidence from the clinical trial program regarding the safety and efficacy of the drug and its effects on organs typically involved in FD. The position paper also includes a practical guide for clinicians on the optimal selection of patients with FD who will benefit from migalastat treatment, recommendations on the optimal selection of diagnostic tests and the use of tools to identify patients with amenable GLA mutations. Areas for future migalastat clinical research have also been identified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797794 | PMC |
http://dx.doi.org/10.1186/s13023-024-03028-w | DOI Listing |
Adv Rheumatol
January 2025
Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
Background: Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD).
View Article and Find Full Text PDFCytotechnology
February 2025
Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China.
Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy.
View Article and Find Full Text PDFPathologica
December 2024
Department of Pharmacy, University of Salerno, Italy.
Objective: This study investigated metformin as a sensitizer for radiotherapy in oral squamous cell carcinoma (OSCC) to reduce the radiation intensity. It evaluated the drug's effect on Chromatin Assembly Factor-1 (CAF-1) expression, whose high levels correlate with worse prognosis of this cancer.
Methods: The effects of metformin, alone and with radiotherapy, were evaluated on CAL27 (HPV-) and SCC154 (HPV+) OSCC cells.
Pol J Vet Sci
December 2024
Department of Basic sciences, Faculty of Veterinary Medicine, Tabriz medical sciences branch, Islamic Azad University, 5159115705, Tabriz, Iran.
Male fertility is adversely influenced by diabetes. The beneficial effects of antioxidant bioflavonoids in improving fertility have been reported. This study was conducted to evaluate the effects of silymarin on diabetes mellitus-induced male reproductive impairment in rats by investigating its role in Hsp70 and Hsp90 expression.
View Article and Find Full Text PDFCancer Res Treat
December 2024
Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea.
Purpose: This study aims to investigate the role of Cytochrome b-245 chaperone 1 (CYBC1) in glioblastoma (GBM) progression, focusing on its involvement in reactive oxygen species (ROS) production and associated signaling pathways. Understanding the molecular mechanisms driven by CYBC1 could provide new therapeutic targets and prognostic markers for GBM.
Materials And Methods: Publicly available datasets were analyzed to assess CYBC1 expression in GBM and its correlation with patient survival.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!