Treatment-induced neuroendocrine prostate cancer (t-NEPC) is a lethal subtype of castration-resistant prostate cancer resistant to androgen receptor (AR) inhibitors. Our study unveils that AR suppresses the neuronal development protein dihydropyrimidinase-related protein 5 (DPYSL5), providing a mechanism for neuroendocrine transformation under androgen deprivation therapy. Our unique CRPC-NEPC cohort, comprising 135 patient tumor samples, including 55 t-NEPC patient samples, exhibits a high expression of DPYSL5 in t-NEPC patient tumors. DPYSL5 correlates with neuroendocrine-related markers and inversely with AR and PSA. DPYSL5 overexpression in prostate cancer cells induces a neuron-like phenotype, enhances invasion, proliferation, and upregulates stemness and neuroendocrine-related markers. Mechanistically, DPYSL5 promotes prostate cancer cell plasticity via EZH2-mediated PRC2 activation. Depletion of DPYSL5 decreases proliferation, induces G1 phase cell cycle arrest, reverses neuroendocrine phenotype, and upregulates luminal genes. In conclusion, DPYSL5 plays a critical role in regulating prostate cancer cell plasticity, and we propose the AR/DPYSL5/EZH2/PRC2 axis as a driver of t-NEPC progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10796342PMC
http://dx.doi.org/10.1038/s42003-023-05741-xDOI Listing

Publication Analysis

Top Keywords

prostate cancer
24
dpysl5
8
treatment-induced neuroendocrine
8
neuroendocrine prostate
8
neuroendocrine-related markers
8
cancer cell
8
cell plasticity
8
prostate
6
cancer
6
dpysl5 highly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!