Recently, there has been a surge of interest in the application of radiation-shielding materials. One promising research avenue involves using free-lead metal oxides/polymer composites, which have been studied for their radiation shielding and characterization properties. This study reinforced the dimethylpolysiloxane (silicone rubber) composites with micro- and nano-sized particles of tin oxide, cadmium oxide, and bismuth oxide as additive materials. The composites were tested with 20 and 50 weight fractions, and their attenuation coefficients were measured using a NaI(TI) detector at gamma-ray energies ranging from 59.54 to 1408.01 keV. Also, the thermal and mechanical properties of the composites were observed and compared with those of free silicone rubber. The results showed that the 50% nano metal oxide/SR composites exhibited better thermal stability and attenuation properties than the other composites, also possessing unique attributes such as lightweight composition and exceptional flexibility. Consequently, this composite material holds immense potential for safeguarding vital organs, including the eyes and gonads, during radiological diagnosis or treatment procedures. Its exceptional ability to absorb a significant portion of incident rays makes it an invaluable asset in the field of radiation protection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10796670 | PMC |
http://dx.doi.org/10.1038/s41598-024-51965-0 | DOI Listing |
Adv Mater
January 2025
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.
Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti-counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free-standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China.
Silicone rubber (SR) holds significant potential for everyday wearable devices due to its inherent sweat resistance and flexibility. However, its broader applicability is constrained by poor oil resistance and a suboptimal slip performance. In this study, we developed an SR with durable oil resistance and enhanced slip properties by forming a covalently bonded barrier layer on its surface through a one-step in situ fluorination reaction using F/N.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Mechanical Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
The degradation of rubber materials under environmental and mechanical stress presents a significant challenge, particularly due to UV (ultraviolet light) exposure, which severely impacts the material's physical properties. This study aims to enhance the UV stability and longevity of rubber by evaluating the performance of modified polyurethane and silicone coatings as protective stabilizers. Natural rubber-styrene-butadiene rubber (NR-SBR), known for its exceptional mechanical properties, was selected as the base material.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea.
The application of smart materials in robots has attracted considerable research attention. This study developed an inchworm robot that integrates smart materials and a bionic design, using the unique properties of magnetorheological elastomers (MREs) to improve the performance of robots in complex environments, as well as their adaptability and movement efficiency. This research stems from solving the problem of the insufficient adaptability of traditional bionic robots on different surfaces.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
The advancement of medical 3D printing technology includes several enhancements, such as decreasing the length of surgical procedures and minimizing anesthesia exposure, improving preoperative planning, creating personalized replicas of tissues and bones specific to individual patients, bioprinting, and providing alternatives to human organ transplants. The range of materials accessible for 3D printing within the healthcare industry is significantly narrower when compared with conventional manufacturing techniques. Liquid silicone rubber (LSR) is characterized by its remarkable stability, outstanding biocompatibility, and significant flexibility, thus presenting substantial opportunities for manufacturers of medical devices who are engaged in 3D printing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!