The first step in any dietary monitoring system is the automatic detection of eating episodes. To detect eating episodes, either sensor data or images can be used, and either method can result in false-positive detection. This study aims to reduce the number of false positives in the detection of eating episodes by a wearable sensor, Automatic Ingestion Monitor v2 (AIM-2). Thirty participants wore the AIM-2 for two days each (pseudo-free-living and free-living). The eating episodes were detected by three methods: (1) recognition of solid foods and beverages in images captured by AIM-2; (2) recognition of chewing from the AIM-2 accelerometer sensor; and (3) hierarchical classification to combine confidence scores from image and accelerometer classifiers. The integration of image- and sensor-based methods achieved 94.59% sensitivity, 70.47% precision, and 80.77% F1-score in the free-living environment, which is significantly better than either of the original methods (8% higher sensitivity). The proposed method successfully reduces the number of false positives in the detection of eating episodes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10796396PMC
http://dx.doi.org/10.1038/s41598-024-51687-3DOI Listing

Publication Analysis

Top Keywords

eating episodes
20
detection eating
12
number false
8
false positives
8
positives detection
8
detection
5
eating
5
episodes
5
integrated image
4
image sensor-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!